Home
Class 12
MATHS
If xyz=m and det p=|{:(x,y,z),(z,x,y),(y...

If xyz=m and det `p=|{:(x,y,z),(z,x,y),(y,z,x):}|` , where p is an orthogonal matrix.
If y=x=z, then z is equal to

A

`pm 1root/3`

B

`pm 5/3`

C

`pm 2/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the logic presented in the video transcript. ### Step 1: Understand the given information We are given that \( xyz = m \) and the determinant \( p = |(x, y, z), (z, x, y), (y, z, x)| \) is an orthogonal matrix. We also know that \( y = x = z \). ### Step 2: Set up the determinant matrix The matrix \( p \) can be expressed as: \[ p = \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix} \] ### Step 3: Transpose the matrix The transpose of matrix \( p \) is: \[ p^T = \begin{pmatrix} x & z & y \\ y & x & z \\ z & y & x \end{pmatrix} \] ### Step 4: Multiply \( p \) by \( p^T \) We need to compute the product \( p \cdot p^T \): \[ p \cdot p^T = \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix} \cdot \begin{pmatrix} x & z & y \\ y & x & z \\ z & y & x \end{pmatrix} \] ### Step 5: Calculate the elements of the product Calculating the first element (1,1): \[ x^2 + y^2 + z^2 \] Calculating the first element (1,2): \[ xz + yx + zy \] Calculating the first element (1,3): \[ xy + yz + zx \] Calculating the second row similarly will give us: \[ \begin{pmatrix} x^2 + y^2 + z^2 & xz + yx + zy & xy + yz + zx \\ \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots \end{pmatrix} \] ### Step 6: Set the product equal to the identity matrix Since \( p \) is an orthogonal matrix, we have: \[ p \cdot p^T = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 7: Equate the corresponding elements From the (1,1) position, we get: \[ x^2 + y^2 + z^2 = 1 \] ### Step 8: Substitute \( y = x = z \) Let \( x = z = y = k \). Then: \[ 3k^2 = 1 \] ### Step 9: Solve for \( k \) \[ k^2 = \frac{1}{3} \implies k = \pm \frac{1}{\sqrt{3}} \] ### Step 10: Conclusion Thus, \( z = k = \pm \frac{1}{\sqrt{3}} \). ### Final Answer The value of \( z \) is \( \pm \frac{1}{\sqrt{3}} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^3+y^3+z^3 can be

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^(-1)+y^(-1)+z^(-1) is

|{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

If x, y and z are the roots of the equation 2t^(3)-(tan[x+y+z]pi)t^(2)-11t+2020=0 , then |(x,y,z),(y,z,x),(z,x,y)| is equal to (where, [x] denotes the greatest integral value less than or equal to x)

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)| =k |(x,z,y),(y,x,z),(z,y,x)| , then k is equal to