Home
Class 12
MATHS
Let alpha,beta , be the roots of the equ...

Let `alpha,beta` , be the roots of the equation `x^2+x-1=0`. Let `S_n=alpha^n+beta^n "for" n ge 1`. Evaluate the determinant `|{:(3,1+s_1,1+s_2),(1+s_1,1+s_2,1+s_3),(1+s_2,1+s_3,1+s_4):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Find the roots of the equation Given the quadratic equation \( x^2 + x - 1 = 0 \), we can find the roots \( \alpha \) and \( \beta \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 1, c = -1 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Thus, the roots are: \[ \alpha = \frac{-1 + \sqrt{5}}{2}, \quad \beta = \frac{-1 - \sqrt{5}}{2} \] ### Step 2: Calculate \( S_n = \alpha^n + \beta^n \) We will calculate \( S_1, S_2, S_3, \) and \( S_4 \). #### For \( S_1 \): \[ S_1 = \alpha + \beta = -1 \] #### For \( S_2 \): Using the identity \( S_2 = (\alpha + \beta)^2 - 2\alpha\beta \): \[ S_2 = (-1)^2 - 2(-1) = 1 + 2 = 3 \] #### For \( S_3 \): Using the identity \( S_3 = (\alpha + \beta)S_2 - \alpha\beta S_1 \): \[ S_3 = (-1)(3) - (-1)(-1) = -3 - 1 = -4 \] #### For \( S_4 \): Using the identity \( S_4 = (\alpha + \beta)S_3 - \alpha\beta S_2 \): \[ S_4 = (-1)(-4) - (-1)(3) = 4 + 3 = 7 \] ### Step 3: Substitute values into the determinant Now we substitute \( S_1, S_2, S_3, S_4 \) into the determinant: \[ \begin{vmatrix} 3 & 1 + S_1 & 1 + S_2 \\ 1 + S_1 & 1 + S_2 & 1 + S_3 \\ 1 + S_2 & 1 + S_3 & 1 + S_4 \end{vmatrix} \] Substituting the values: \[ S_1 = -1, S_2 = 3, S_3 = -4, S_4 = 7 \] We get: \[ \begin{vmatrix} 3 & 0 & 4 \\ 0 & 4 & -3 \\ 4 & -3 & 8 \end{vmatrix} \] ### Step 4: Calculate the determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: - \( a = 3, b = 0, c = 4 \) - \( d = 0, e = 4, f = -3 \) - \( g = 4, h = -3, i = 8 \) Calculating: \[ D = 3(4 \cdot 8 - (-3)(-3)) - 0 + 4(0 \cdot -3 - 4 \cdot 4) \] \[ = 3(32 - 9) + 4(0 - 16) \] \[ = 3 \cdot 23 - 64 \] \[ = 69 - 64 = 5 \] ### Final Answer The value of the determinant is \( \boxed{5} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

Let alpha\ &\ beta be the roots of equation a x^2+b x+c=0\ a n d S_n=alpha^n+beta^nfor\ ngeq1. Evaluate the value of the determinant |3 1+S_1 1+S_2 1+S_1 1+S_2 1+S_3 1+S_2 1+S_3 1+S_4|

If alpha,beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n then evaluate |[3, 1+s_1, +s_2] , [1+s_1, 1+s_2, 1+s_3] , [1+s_2, 1+s_3, 1+s_4]|

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is

If alphaa n dbeta are the roots of ax^2+bx+c=0a n dS_n=alpha^n+beta^n, then a S_(n+1)+b S_n+c S_(n-1)=0 and hence find S_5dot

if alpha , beta be roots of equation 375 x^2 -25 x -2 = 0 and s_n = alpha^n + beta^n then lim_(n->oo) (sum_(r=1)^n S_r) = .......

If alpha, beta be the real roots of ax^2+bx+c=0 , and s_n=alpha^n + beta^n then prove that as_n + bs_(n-1)+cs_(n-2)=0 .for all n in N .

Let alpha and beta are roots of equation x^(2)-x-1=0 with alpha > beta . For all positive integers n defines a_(n)=(alpha^(n)-beta^(n))/(alpha-beta) , n>1 and b=1 and b_(n)=a_(n+1)+a_(n-1) then