Home
Class 12
CHEMISTRY
N2O2 hArr NO,K1,1/2 N2 +1/2O2hArr NO,K2 ...

`N_2O_2 hArr NO,K_1,1/2 N_2 +1/2O_2hArr NO,K_2 2NO hArr N_2+O_2k_3 , NO hArr 1/2 N_2 +1/2O_2 K_4`

A

`K_1 xx K_3 =1`

B

`sqrt(K_1)xxK_4=1`

C

`sqrt(K_3)xxK_2=1`

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem involving the equilibrium constants for the given reactions, we will analyze each reaction step by step and derive the expressions for the equilibrium constants. ### Step 1: Write the Equilibrium Constants for Each Reaction 1. **For the reaction**: \[ N_2O_2 \rightleftharpoons 2NO \quad (K_1) \] The equilibrium constant \( K_1 \) is given by: \[ K_1 = \frac{[NO]^2}{[N_2O_2]} \] 2. **For the reaction**: \[ \frac{1}{2} N_2 + \frac{1}{2} O_2 \rightleftharpoons NO \quad (K_2) \] The equilibrium constant \( K_2 \) is given by: \[ K_2 = \frac{[NO]}{[N_2]^{1/2} [O_2]^{1/2}} = \frac{[NO]}{\sqrt{[N_2][O_2]}} \] 3. **For the reaction**: \[ 2NO \rightleftharpoons N_2 + O_2 \quad (K_3) \] The equilibrium constant \( K_3 \) is given by: \[ K_3 = \frac{[N_2][O_2]}{[NO]^2} \] 4. **For the reaction**: \[ NO \rightleftharpoons \frac{1}{2} N_2 + \frac{1}{2} O_2 \quad (K_4) \] The equilibrium constant \( K_4 \) is given by: \[ K_4 = \frac{[N_2]^{1/2}[O_2]^{1/2}}{[NO]} = \frac{\sqrt{[N_2][O_2]}}{[NO]} \] ### Step 2: Analyze the Options Given Now, we will analyze the options provided in the question: 1. **Option A**: \( K_1 \times K_4 \) \[ K_1 \times K_4 = \left(\frac{[NO]^2}{[N_2O_2]}\right) \times \left(\frac{\sqrt{[N_2][O_2]}}{[NO]}\right) \] Simplifying this gives: \[ = \frac{[NO]}{[N_2O_2]} \times \sqrt{[N_2][O_2]} \] This does not yield a valid expression related to the other constants. 2. **Option B**: \( \sqrt{K_1 \times K_4} \) \[ \sqrt{K_1 \times K_4} = \sqrt{\left(\frac{[NO]^2}{[N_2O_2]}\right) \times \left(\frac{\sqrt{[N_2][O_2]}}{[NO]}\right)} \] This simplifies to: \[ = \sqrt{\frac{[NO] \cdot \sqrt{[N_2][O_2]}}{[N_2O_2]}} \] This also does not yield a valid expression. 3. **Option C**: \( \sqrt{K_3 \times K_2} \) \[ \sqrt{K_3 \times K_2} = \sqrt{\left(\frac{[N_2][O_2]}{[NO]^2}\right) \times \left(\frac{[NO]}{\sqrt{[N_2][O_2]}}\right)} \] This simplifies to: \[ = \sqrt{\frac{[N_2][O_2]}{[NO]}} = 1 \] This is a valid expression. ### Conclusion Thus, the correct answer is **Option C**: \( \sqrt{K_3 \times K_2} = 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

N_(2)O_(2) hArr 2NO, K_(1), (1/2)N_(2)+(1/2)O_(2) hArr NO, K_(2), 2NO hArr N_(2)+O_(2),K_(3), NO hArr (1/2)N_(2)+(1/2)O_(2),K_(4) Correct relaton(s) between K_(1), K_(2), K_(3) and K_(4) is/are

The following equilibria are given by : N_(2)+3H_(2) hArr 2NH_(3), K_(1) N_(2)+O_(2) hArr 2NO,K_(2) H_(2)+(1)/(2)O_(2) hArr H_(2)O, K_(3) The equilibrium constant of the reaction 2NH_(3)+(5)/(2)O_(2)hArr 2NO +3H_(2)O in terms of K_(1) , K_(2) and K_(3) is

From the following data (at 298 K) prdict which oxide of Nitrogen is most stable 2NO_2hArr N_2(g) +2O_2(g) , K= 6.7 xx 10 ^(16) 2NO (g) hArr N_2(g) O_2( g) , K =2.2xx 10 ^(30) 2N_2O (g) hArr 2N_2(g) + O_2(g) , K=3.5 xx 10^(23) 2N_2O_5(g) hArr 2N_2(g) + 5O_2(g) , K= 1.2 xx 10^(34)

P hArr Q, K_1 1/3RhArr 1/3Q,K_2 2R hArr 2S, K_3 P hArr S, K_4 =? Here, K_1 , K_2 , K_3 and K_4 are equilibrium constants:-

The equilibrium constant of the following are : " " {:(N_2+3H_2hArr 2NH_3, K_1),(N_2+O_2hArr 2NO , K_2) , (H_2+(1)/(2) O_2 to H_2O , K_3) :} The equilibrium constant (K) of the reaction : 2NH_3+(5)/(2) O_2 overset(k) hArr 2NO +3H_2O, will be (a) K_1K_3^(3) //K_2 (b) K_2K_3^(3) //K_1 (c) K_2K_3//K_1 (d) K_2^(3) K_3//K_1

The following equilibrium constants are given N_2+3H_2 harr 2NH_3,K_1 N_2+O_2 harr 2NO , K_2 H_2+1/2 O_2 harr H_2O , K_3 The equlibrium constant for the oxidation of NH_3 by oxygen to given NO is

For the following reactions, occurring at 500 K, arrange them in order of increasing tendency to proceed to completion (least rarr greatest tendency) 1. 2NOCl hArr 2NO + Cl_2 , K_p = 1.7 xx10^(-2) 2. 2SO_3 hArr 2SO_2 + O_2 , K_p = 1.3 xx10^(-5) 3. 2NO_2hArr 2NO+ O_2, K_p = 5.9 xx10^(-5)

The relation between K_(p) and K_(c) is K_(p)=K_(c)(RT)^(Deltan) unit of K_(p)=(atm)^(Deltan) , unit of K_(c)=(mol L^(-1))^(Deltan) Given: 2NO(g)+O_(2)(g) hArr 2NO_(2)(g), K_(1) 2NO_(2)(g) hArr N_(2)O_(4)(g), K_(2) 2NO(g)+O_(2)(g) hArr N_(2)O_(4)(g), K_(3) Which of the following relations is correct?

consider the following reversible gaseous reaction (at 298 K): (A) N_(2)O_(4)hArr 2NO_2 (B) 2SO_(2) + O_(2)hArr2SO_(3) (C) 2HI hArrH_(2) + I_(2) (D) X + Y hArr4Z Highest and lowest value of (K_(p))/(K_(c)) will be shown by the equilibrium

Equilibrium constants for (a) N_2 + O_2 hArr 2NO and (b) NO + 1/2O_2 hArr NO_2 are K_1 and K_2 , respectively, then the equilibrium constant K_3 for the reaction N_2 + 2O_2 hArr 2NO_2 will be :-