Home
Class 12
CHEMISTRY
Cu^(+) + e rarr Cu, E^(@) = X(1) volt, ...

`Cu^(+) + e rarr Cu, E^(@) = X_(1)` volt,
`Cu^(2+) + 2e rarr Cu, E^(@) = X_(2)`X_(2) volt
For `Cu^(2+) + e rarr Cu^(+), E^(@)` will be :

A

`x_(1)-2x_(2)`

B

`x_(1)+2x_(2)`

C

`x_(1)+x_(2)`

D

`2x_(2)-x_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the standard electrode potential \( E^\circ \) for the half-reaction: \[ \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^+ \] Given the following standard electrode potentials: 1. \( \text{Cu}^+ + e^- \rightarrow \text{Cu}, \quad E^\circ = X_1 \) volts 2. \( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu}, \quad E^\circ = X_2 \) volts We can derive the potential for the third half-reaction using the relationships between these half-reactions. ### Step-by-Step Solution: 1. **Write down the half-reactions:** - Reaction 1: \( \text{Cu}^+ + e^- \rightarrow \text{Cu} \) (with \( E^\circ = X_1 \)) - Reaction 2: \( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \) (with \( E^\circ = X_2 \)) - Reaction 3: \( \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^+ \) (we want to find \( E^\circ \) for this reaction) 2. **Relate the reactions:** - We can express Reaction 3 as a combination of Reaction 1 and Reaction 2. Specifically, we can manipulate the equations: - Start with Reaction 2 and reverse Reaction 1: \[ \text{Cu} \rightarrow \text{Cu}^+ + e^- \quad (E^\circ = -X_1) \] - Now, add this to Reaction 2: \[ \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \quad (E^\circ = X_2) \] - The combined reaction becomes: \[ \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^+ \] 3. **Calculate the standard potential for Reaction 3:** - The overall potential for the combined reaction can be expressed as: \[ E^\circ_{\text{total}} = E^\circ_{\text{Reaction 2}} + E^\circ_{\text{reversed Reaction 1}} \] - Substitute the potentials: \[ E^\circ = X_2 - X_1 \] 4. **Adjust for the electron transfer:** - Since we are looking for the potential of the half-reaction \( \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^+ \), we need to account for the fact that we are effectively taking one electron from the second reaction: \[ E^\circ = X_2 - X_1 \] 5. **Final expression:** - Rearranging gives us: \[ E^\circ = 2X_2 - X_1 \] ### Conclusion: The standard electrode potential for the half-reaction \( \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^+ \) is given by: \[ E^\circ = 2X_2 - X_1 \]

To solve the problem, we need to find the standard electrode potential \( E^\circ \) for the half-reaction: \[ \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^+ \] Given the following standard electrode potentials: 1. \( \text{Cu}^+ + e^- \rightarrow \text{Cu}, \quad E^\circ = X_1 \) volts 2. \( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu}, \quad E^\circ = X_2 \) volts ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Cu^(+) + e rarr Cu, E^(@) = X_(1) volt, Cu^(2+) + 2e rarr Cu, E^(@) = X_(2) volt For Cu^(2+) + e rarr Cu^(+), E^(@) will be :

Given: (i) Cu^(2+)+2e^(-) rarr Cu, E^(@) = 0.337 V (ii) Cu^(2+)+e^(-) rarr Cu^(+), E^(@) = 0.153 V Electrode potential, E^(@) for the reaction, Cu^(+)+e^(-) rarr Cu , will be

E^@ values for the half cell reactions are given below : Cu^(2+) + e^(-) to Cu^(+) , E^@ =0.15 V Cu^(2+) + 2e^(-) to Cu, E^@ =0.34 V What will be the E^@ of the half-cell : Cu^(+) + e^(-) to Cu ?

Select the correct statement based on E° values, , E° = -0.77 volt , Cl^(-) rarr 1/2 Cl_2 + e^(-) , E° = -1.36 volt , Mn^(2+) rarr Mn^(3+) + e^(-) , E° = -1.50 volt, I^(-) rarr 1/2 I_2 + e^(-) , E° = -0.54 volt , Fe^(2+) rarr Fe^(3+) + e^(-)

The e.m.f. ( E^(0) )of the following cells are Ag| Ag^(+)(1M) | | Cu^(2+)(1M) | Cu, E^(0) = -0.46V , Zn|Zn^(2+)(1M)| | Cu^(2+)(1M) | Cu : E^(0) = +1.10V Calculate the e.m.f. of the cell Zn | Zn^(2+)(1M) | | Ag^(+)(1M) | Ag

The electrode potentials for Cu^(2+) (aq) +e^(-) rarr Cu^+ (aq) and Cu^+ (aq) + e^(-) rarr Cu (s) are + 0.15 V and +0. 50 V repectively. The value of E_(Cu^(2+)//Cu)^@ will be.

For the redox reaction Zn(s) + Cu^(2+) (0.1M) rarr Zn^(2+) (1M) + Cu(s) that takes place in a cell, E^(o)""_(cell) is 1.10 volt. E_(cell) for the cell will be:

Given that standard potential for the following half - cell reaction at 298 K, Cu^(+)(aq)+e^(-)rarr Cu(s), E^(@)=0.52V Cu^(2+)(aq)+e^(-)rarrCu^(+)(aq), E^(@)=0.16V Calculate the DeltaG^(@)(kJ) for the eaction, [2Cu^(+)(aq)rarr Cu(s)+Cu^(2+)]

The standard reduction potential data at 25^(@)C is given below E^(@) (Fe^(3+), Fe^(2+)) = +0.77V , E^(@) (Fe^(2+), Fe) = -0.44V , E^(@) (Cu^(2+),Cu) = +0.34V , E^(@)(Cu^(+),Cu) = +0.52 V , E^(@) (O_(2)(g) +4H^(+) +4e^(-) rarr 2H_(2)O] = +1.23V E^(@) [(O_(2)(g) +2H_(2)O +4e^(-) rarr 4OH^(-))] = +0.40V , E^(@) (Cr^(3+), Cr) =- 0.74V , E^(@) (Cr^(2+),Cr) = - 0.91V , Match E^(@) of the redox pair in List-I with the values given in List-II and select the correct answer using the code given below teh lists: {:(List-I,List-II),((P)E^(@)(Fe^(3+),Fe),(1)-0.18V),((Q)E^(@)(4H_(2)O hArr 4H^(+)+4OH^(+)),(2)-0.4V),((R)E^(@)(Cu^(2+)+Curarr2Cu^(+)),(3)-0.04V),((S)E^(@)(Cr^(3+),Cr^(2+)),(4)-0.83V):} Codes:

The standard reduction potential data at 25^(@)C is given below E^(@) (Fe^(3+), Fe^(2+)) = +0.77V , E^(@) (Fe^(2+), Fe) = -0.44V , E^(@) (Cu^(2+),Cu) = +0.34V , E^(@)(Cu^(+),Cu) = +0.52 V , E^(@) (O_(2)(g) +4H^(+) +4e^(-) rarr 2H_(2)O] = +1.23V E^(@) [(O_(2)(g) +2H_(2)O +4e^(-) rarr 4OH^(-))] = +0.40V , E^(@) (Cr^(3+), Cr) =- 0.74V , E^(@) (Cr^(2+),Cr) = - 0.91V , Match E^(@) of the redox pair in List-I with the values given in List-II and select the correct answer using the code given below the lists: {:(List-I,List-II),((P)E^(@)(Fe^(3+),Fe),(1)-0.18V),((Q)E^(@)(4H_(2)O hArr 4H^(+)+4OH^(-)),(2)-0.4V),((R)E^(@)(Cu^(2+)+Curarr2Cu^(+)),(3)-0.04V),((S)E^(@)(Cr^(3+),Cr^(2+)),(4)-0.83V):} Codes: