Home
Class 12
CHEMISTRY
Calculate the standard free energy chang...

Calculate the standard free energy change in kJ for the reaction `Cu^(+) +I^(-) to CuI` Given:
`CuI + e to Cu+I^(-) E^(0)=-0.17V`
`Cu^(+)+e to Cu E^(0)=0.53V`

A

`-67.55`

B

135.1

C

1.78

D

`-1.75`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard free energy change (ΔG°) for the reaction \( \text{Cu}^+ + \text{I}^- \rightarrow \text{CuI} \), we will follow these steps: ### Step 1: Write down the given half-reactions and their standard electrode potentials (E°). 1. \( \text{CuI} + e^- \rightarrow \text{Cu}^+ + \text{I}^- \) (E° = -0.17 V) 2. \( \text{Cu}^+ + e^- \rightarrow \text{Cu} \) (E° = 0.53 V) ### Step 2: Reverse the first half-reaction. Since the desired reaction has \( \text{CuI} \) as a product, we need to reverse the first half-reaction. When we reverse a half-reaction, we also change the sign of its standard potential. Reversed Reaction: \[ \text{Cu}^+ + \text{I}^- \rightarrow \text{CuI} + e^- \] E° becomes +0.17 V. ### Step 3: Add the two half-reactions. Now we will add the reversed first half-reaction to the second half-reaction: 1. \( \text{Cu}^+ + \text{I}^- \rightarrow \text{CuI} + e^- \) (E° = +0.17 V) 2. \( \text{Cu}^+ + e^- \rightarrow \text{Cu} \) (E° = 0.53 V) Adding these two reactions: - The electrons cancel out: \[ \text{Cu}^+ + \text{I}^- \rightarrow \text{CuI} \] ### Step 4: Calculate the overall standard electrode potential (E°). The overall standard potential (E°) for the combined reaction is: \[ E° = 0.17 + 0.53 = 0.70 \, \text{V} \] ### Step 5: Use the formula for standard free energy change (ΔG°). The relationship between standard free energy change and standard electrode potential is given by: \[ \Delta G° = -nFE° \] Where: - \( n \) = number of moles of electrons transferred (1 mole in this case) - \( F \) = Faraday's constant (approximately 96500 C/mol) - \( E° \) = standard electrode potential (0.70 V) ### Step 6: Substitute the values into the equation. Substituting the values: \[ \Delta G° = -1 \times 96500 \, \text{C/mol} \times 0.70 \, \text{V} \] \[ \Delta G° = -1 \times 96500 \times 0.70 \] \[ \Delta G° = -67,550 \, \text{J} \] ### Step 7: Convert to kilojoules. To convert joules to kilojoules: \[ \Delta G° = -67.55 \, \text{kJ} \] ### Final Answer: The standard free energy change (ΔG°) for the reaction \( \text{Cu}^+ + \text{I}^- \rightarrow \text{CuI} \) is: \[ \Delta G° = -67.55 \, \text{kJ} \]

To calculate the standard free energy change (ΔG°) for the reaction \( \text{Cu}^+ + \text{I}^- \rightarrow \text{CuI} \), we will follow these steps: ### Step 1: Write down the given half-reactions and their standard electrode potentials (E°). 1. \( \text{CuI} + e^- \rightarrow \text{Cu}^+ + \text{I}^- \) (E° = -0.17 V) 2. \( \text{Cu}^+ + e^- \rightarrow \text{Cu} \) (E° = 0.53 V) ### Step 2: Reverse the first half-reaction. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the standard free enegry change for the reaction: Zn + Cu^(2+)(aq) rarr Cu+Zn^(2+) (aq), E^(Theta) = 1.20V

The standard free energy change of the reaction Cu^(2+)+Sn(s)rarrCu(s)+Sn^(2+) Given : E^(@)=0.48V ) is:

The Gibbs energy change (in J) for the given reaction at [Cu^(2+) ] = [Sn^(2+) ] = 1 M and 298 K is : Cu (s) + Sn^(2+) (aq) to Cu^(2+) (aq.) + Sn(s), (E_(Sn^(2+) // Sn)^(0) = -0.16 V E_(Cu^(2+) |Cu)^(0) = 0.34 V , Take F = 96500 C mol^(-1) )

Calculate the DeltaG^(@) and equilibrium constant of the reaction at 27^(@)C Mg+ Cu^(+2) hArr Mg^(+2) + Cu E_(Mg^(2+)//Mg)^(@) = -2.37V, E_(Cu^(2+)//Cu)^(@) = +0.34V

Calculate the equilibrium constant for the reaction at 298 K Zn(s)+Cu^(2+)(aq)harr Zn^(2+)(aq)+Cu(s) Given " " E_(Zn^(2+)//Zn)^(@)=-0.76 V and E_(Cu^(2+)//Cu)^(@)=+0.34 V

Calculate the equilibrium constant for the reaction Fe + CuSO_4 ⇌ FeSO_4 + Cu at 25°C. (Given E°(OP/Fe) = 0.5 V°, E°(OP/Cu) = -0.4 V)

Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V

Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V

Calculate E_("cell") at 25^(@)C for the reaction : Zn+Cu^(2+) (0.20M) to Zn^(2+) (0.50M)+Cu Given E^(Theta) (Zn^(2+)//Zn)= -0.76V, E^(Theta)(Cu^(2+)//Cu)=0.34V .

Calculate the maximum work that can be obtained from the decimolar Daniell cell at 25^(@)C . Given E^(c-)._((Zn^(2+)|Zn))=-0.76V and E^(c-)._((Cu^(2+)|Cu))=0.34V