Home
Class 12
CHEMISTRY
Given E(M^(4+),M^(3+))^(0)=xV, E(M^(4+),...

Given `E_(M^(4+),M^(3+))^(0)=xV, E_(M^(4+),M)^(0)="y V hence "E_(M^(3+),M)^(0)`, is equal to :

A

`(4y-x)/(3)`

B

`(x-3y)/(4)`

C

`(x+4y)/(3)`

D

`(x+2y)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the standard electrode potential \( E^{0}_{(M^{3+}, M)} \) using the given values \( E^{0}_{(M^{4+}, M^{3+})} = x \) volts and \( E^{0}_{(M^{4+}, M)} = y \) volts. ### Step-by-Step Solution: 1. **Understanding the Reactions**: - The half-reaction for the conversion of \( M^{4+} \) to \( M^{3+} \) is: \[ M^{4+} + e^- \rightarrow M^{3+} \quad (1) \] This corresponds to the standard potential \( E^{0}_{(M^{4+}, M^{3+})} = x \). - The half-reaction for the conversion of \( M^{4+} \) to \( M \) is: \[ M^{4+} + 4e^- \rightarrow M \quad (2) \] This corresponds to the standard potential \( E^{0}_{(M^{4+}, M)} = y \). - The half-reaction for the conversion of \( M^{3+} \) to \( M \) is: \[ M^{3+} + 3e^- \rightarrow M \quad (3) \] We need to find \( E^{0}_{(M^{3+}, M)} \). 2. **Using the Nernst Equation**: - The relationship between the potentials can be derived from the overall reaction: \[ M^{3+} + 3e^- \rightarrow M \quad (3) \] can be expressed in terms of reactions (1) and (2). 3. **Setting Up the Equation**: - We can express the potential for reaction (3) as: \[ E^{0}_{(M^{3+}, M)} = E^{0}_{(M^{4+}, M)} - E^{0}_{(M^{4+}, M^{3+})} \] - Substituting the known values: \[ E^{0}_{(M^{3+}, M)} = y - x \] 4. **Final Expression**: - To find \( E^{0}_{(M^{3+}, M)} \) in terms of \( x \) and \( y \), we can rearrange the equation: \[ E^{0}_{(M^{3+}, M)} = \frac{4y + x}{3} \] ### Conclusion: Thus, the standard electrode potential \( E^{0}_{(M^{3+}, M)} \) is given by: \[ E^{0}_{(M^{3+}, M)} = \frac{4y + x}{3} \]

To solve the problem, we need to determine the standard electrode potential \( E^{0}_{(M^{3+}, M)} \) using the given values \( E^{0}_{(M^{4+}, M^{3+})} = x \) volts and \( E^{0}_{(M^{4+}, M)} = y \) volts. ### Step-by-Step Solution: 1. **Understanding the Reactions**: - The half-reaction for the conversion of \( M^{4+} \) to \( M^{3+} \) is: \[ M^{4+} + e^- \rightarrow M^{3+} \quad (1) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a e^(m x)+b e^(-m x), then (d^(2y))/(dx^2) is equals to

E_(M^(3+)//(M))^(@) = -0.036V , E_(M^(2+)//M)^(@)= -0.439V . The value of standard electrode potential for the change, M^(3+)(aq) + e^(-)rightarrow M^(2+) (aq) will be :

For the electrochemicl cell, M|M^(+)||X^(-)|X E_((M^(+)//M))^(@) = 0.44 V and E_((X//X^(-)))^(@) = 0.33 V From this data one can deduce that :

Given that E_(M^(+)//M)^(@)=-0.44V and E_(X^(+)//X)^(@)=-0.33V at 298K . The value of E_("cell") for M(s)|M^(+)(0.1M)||X^(+)(0.2M)|X(s) at 298K will be [log 2=0.3,log3=0.48,log5=0.7]

Given E_(Cr^(3+)//Cr)^(@)= 0.72V , E_(Fe^(2+)//Fe)^(@)=-0.42V . The potential for the cell Cr|Cr^(3+)(0.1M)||Fe^(2+) (0.01M) | Fe is :

(a). Explain why electrolysis of an aqueous solution of NaCl gives H_(2) at cathode and Cl_(2) at anode. Given E_(Na^(+)//Na)^(@)=-2.71V,E_(H_(2)O//H_(2)^(@)=-0.83V E_(Cl_(2)//2Cl^(-))^(@)=+1.36V,E_(2H^(+)//(1)/(2)O_(2)//H_(2)O)^(@)=+1.23V (b). The resistance of a conductivity cell when filled with 0.05 M solution of an electrolyte X is 100Omega at 40^(@)C . the same conductivity cell filled with 0.01 M solution of electrolyte Y has a resistance of 50Omega . The conductivity of 0.05M solution of electrolyte X is 1.0xx10^(-4)scm^(-1) calculate (i). Cell constant (ii). conductivity of 0.01 M Y solution (iii). Molar conductivity of 0.01 M Y solution.

For the following electrochemical cell at 298K Pt(s)+H_(2)(g,1bar) |H^(+) (aq,1M)||M^(4+)(aq),M^(2+)(aq)|Pt(s) E_(cell) = 0.092 V when ([M^(2+)(aq)])/([M^(4+)(aq)])=10^(x) Guven, E_(M^(4+)//M^(2+))^(@) = 0.151V, 2.303 (RT)/(F) = 0.059 The value of x is-

An iron rod is immersed in a solution containing 1.0 M NiSO_(4) and 1.0 M ZnSO_(4) Predict giving reasons which of the following reactions is likely to proceed ? (i) Fe reduces Zn^(2+) ions, (ii) Iron reduces Ni^(2+) ions. Given : E_(Zn^(2+)| Zn )^(0) = -0.76 volt and , E_(Fe^(2+)|Fe)^(0) = -0.44 volt and E_(Ni^(2+)|Ni)^(0) = -0.25 V

The chlorate ion can disproportinate in basic solution according to reaction, 2ClO_3^(-)iffClO_2^(-)+ClO_4^-) what is the equilibrium concentration of perchlorate ions from a solution initially at 0.1 M in chlorate ions at 298 K? Given: E_(Cl_4^(-)|ClO_3^(-))^(@)=0.36V "and" E_(Cl_3^(-)|ClO_2^(-))^(@)=0.33V "at"298 K (a)0.019M (b)0.024M (c)0.1M (d)0.19M

For the electrochemical cell, (M)|M^(+))||(X^(-)|X) . E^(@)(M^(+)//M)=0.44V and E^(@)(X//X^(-))=0.33V . From this data one can deduce that