Home
Class 12
CHEMISTRY
The standard reduction potential data at...

The standard reduction potential data at `25^(@)C` is given below
`E^(@) (Fe^(3+), Fe^(2+)) = +0.77V`,
`E^(@) (Fe^(2+), Fe) = -0.44V`,
`E^(@) (Cu^(2+),Cu) = +0.34V`,
`E^(@)(Cu^(+),Cu) = +0.52 V`,
`E^(@) (O_(2)(g) +4H^(+) +4e^(-) rarr 2H_(2)O] = +1.23V`
`E^(@) [(O_(2)(g) +2H_(2)O +4e^(-) rarr 4OH^(-))] = +0.40V`,
`E^(@) (Cr^(3+), Cr) =- 0.74V`,
`E^(@) (Cr^(2+),Cr) = - 0.91V`,
Match `E^(@)` of the redox pair in List-I with the values given in List-II and select the correct answer using the code given below the lists:
`{:(List-I,List-II),((P)E^(@)(Fe^(3+),Fe),(1)-0.18V),((Q)E^(@)(4H_(2)O hArr 4H^(+)+4OH^(-)),(2)-0.4V),((R)E^(@)(Cu^(2+)+Curarr2Cu^(+)),(3)-0.04V),((S)E^(@)(Cr^(3+),Cr^(2+)),(4)-0.83V):}`
Codes:

A

`{:(,,P,Q,R,S),(,A,4,1,2,3):}`

B

`{:(,,P,Q,R,S),(,B,2,3,4,1):}`

C

`{:(,,P,Q,R,S),(,C,1,2,3,4):}`

D

`{:(,,P,Q,R,S),(,D,3,4,1,2):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the standard reduction potentials from List-I with the values in List-II, we will follow these steps: ### Step 1: Calculate \( E^\circ \) for \( \text{Fe}^{3+} \) to \( \text{Fe} \) We know from the data: - \( E^\circ (\text{Fe}^{3+}, \text{Fe}^{2+}) = +0.77 \, \text{V} \) - \( E^\circ (\text{Fe}^{2+}, \text{Fe}) = -0.44 \, \text{V} \) Using the formula for combining standard reduction potentials: \[ E^\circ (\text{Fe}^{3+}, \text{Fe}) = E^\circ (\text{Fe}^{3+}, \text{Fe}^{2+}) + E^\circ (\text{Fe}^{2+}, \text{Fe}) \] Substituting the values: \[ E^\circ (\text{Fe}^{3+}, \text{Fe}) = 0.77 \, \text{V} + (-0.44 \, \text{V}) = 0.33 \, \text{V} \] ### Step 2: Calculate \( E^\circ \) for the reaction \( 4 \text{H}_2\text{O} \rightleftharpoons 4 \text{H}^+ + 4 \text{OH}^- \) Using the given potentials: - \( E^\circ (\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O}) = +1.23 \, \text{V} \) - \( E^\circ (\text{O}_2 + 2\text{H}_2\text{O} + 4e^- \rightarrow 4\text{OH}^-) = +0.40 \, \text{V} \) We can find the potential for the reaction by subtracting: \[ E^\circ = E^\circ (\text{OH}^-) - E^\circ (\text{H}_2\text{O}) \] Calculating: \[ E^\circ = 0.40 \, \text{V} - 1.23 \, \text{V} = -0.83 \, \text{V} \] ### Step 3: Calculate \( E^\circ \) for \( \text{Cu}^{2+} + \text{Cu} \rightleftharpoons 2\text{Cu}^{+} \) Using the potentials: - \( E^\circ (\text{Cu}^{2+}, \text{Cu}) = +0.34 \, \text{V} \) - \( E^\circ (\text{Cu}^{+}, \text{Cu}) = +0.52 \, \text{V} \) The relation is: \[ E^\circ (\text{Cu}^{2+}, \text{Cu}^{+}) = E^\circ (\text{Cu}^{2+}, \text{Cu}) - E^\circ (\text{Cu}^{+}, \text{Cu}) \] Calculating: \[ E^\circ = 0.34 \, \text{V} - 0.52 \, \text{V} = -0.18 \, \text{V} \] ### Step 4: Calculate \( E^\circ \) for \( \text{Cr}^{3+} \) to \( \text{Cr}^{2+} \) Using the potentials: - \( E^\circ (\text{Cr}^{3+}, \text{Cr}) = -0.74 \, \text{V} \) - \( E^\circ (\text{Cr}^{2+}, \text{Cr}) = -0.91 \, \text{V} \) The relation is: \[ E^\circ (\text{Cr}^{3+}, \text{Cr}^{2+}) = E^\circ (\text{Cr}^{3+}, \text{Cr}) - E^\circ (\text{Cr}^{2+}, \text{Cr}) \] Calculating: \[ E^\circ = -0.74 \, \text{V} - (-0.91 \, \text{V}) = 0.17 \, \text{V} \] ### Summary of Results 1. \( E^\circ (\text{Fe}^{3+}, \text{Fe}) = 0.33 \, \text{V} \) (not matching any) 2. \( E^\circ (4 \text{H}_2\text{O} \rightleftharpoons 4 \text{H}^+ + 4 \text{OH}^-) = -0.83 \, \text{V} \) matches with (4) 3. \( E^\circ (\text{Cu}^{2+} + \text{Cu} \rightleftharpoons 2\text{Cu}^{+}) = -0.18 \, \text{V} \) matches with (1) 4. \( E^\circ (\text{Cr}^{3+}, \text{Cr}^{2+}) = 0.17 \, \text{V} \) matches with (2) ### Final Matching - \( P \) matches with (1) - \( Q \) matches with (4) - \( R \) matches with (2) - \( S \) matches with (3)

To solve the problem of matching the standard reduction potentials from List-I with the values in List-II, we will follow these steps: ### Step 1: Calculate \( E^\circ \) for \( \text{Fe}^{3+} \) to \( \text{Fe} \) We know from the data: - \( E^\circ (\text{Fe}^{3+}, \text{Fe}^{2+}) = +0.77 \, \text{V} \) - \( E^\circ (\text{Fe}^{2+}, \text{Fe}) = -0.44 \, \text{V} \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

E^(@) of Fe^(2 +) //Fe = - 0.44 V, E^(@) of Cu //Cu^(2+) = -0.34 V . Then in the cell

E_(Cu^(2+)//Cu)^(@)=0.34V E_(Cu^(+)//Cu)^(@)=0.522V E_(Cu^(2+)//Cu^(+))^(@)=

E_(Cu^(2+)//Cu)^(@)=0.34V E_(Cu^(+)//Cu)^(@)=0.522V E_(Cu^(2+)//Cu^(+))^(@)=

E_(Cu^(2+)//Cu)^(@) =0.43V E_(Cu^(+)//Cu)^(@)=0.55V E_(Cu^(2+)//Cu^(+))^(@) =

Copper from copper sulphate solution can be displacesd by. (The standard reduction potentials of some electrodes are given below): E^(o)(Fe^(2+)//Fe) = - 0.44 V, E^(o) (Zn^(2+)//Zn) = - 0.76 V E^(o) (Cu^(2+)//Cu) = + 0.34 V: E^(o)(Cr^(3+)//Cr) = - 0.74 V E^(o) (H^(+)// 1/2H_(2)) = 0.00V

What is the standard reduction potential (E^(@)) for Fe^(3+) to Fe ? Given that : Fe^(2+) + 2e^(-) to Fe, E_(Fe^(2+)//Fe)^(@) =-0.47V Fe^(3+) + e^(-) to Fe^(2+), E_(Fe^(3+)//Fe^(2+))^(@) = +0.77V

Given that the standard reduction potentials E ^(0) of Fe^(+2)|Feis 0.26V and Fe ^(+3) |Fe is 0.76V respectively. The E ^(@)of Fe ^(+2)|Fe^(+3) is:

What is the potential for the cell Cr|Cr^(3+)(0.1M)||Fe^(2+)(0.01M)|Fe E^(@)Cr^(3+)// Cr=-0.74V , E^(@)Fe^(2+)//Fe=-0.44V

Standard electrode potentials are Fe^(2+)//Fe, E^(@) = -0.44 V Fe^(3+)//Fe^(2+), E^(@) = +0.77 V If Fe^(3+), Fe^(2+) , and Fe block are kept together, then

Using the standard electrode potential, find out the pair between which redox reaction is not feasible. E^(@) values : Fe^(3+)//Fe^(2+)=+0.77, I_(2)//I^(-)=+0.54 V Cu^(2+)//Cu= + 0.34 V, Ag^(+)//Ag= +0.80 V