Home
Class 12
CHEMISTRY
Given that at 25^@C [Ag(NH(3))(2)]^(+)...

Given that at `25^@C`
`[Ag(NH_(3))_(2)]^(+) +e^(0) to Ag_((s))+2NH_(3) E^(0)=0.02V and Ag^(+)+1e^(-) to Ag_((s))" " E^(0)=0.8V`
Hence the order of magnitude of equilibrium constant of the reaction
`[Ag(NH_(3))_(2)]^(+) Leftrightarrow Ag^(+) +2NH_(3)`, will be (antilog 0.22=1.66)

A

`10^(-10)`

B

`10^(-6)`

C

`10^(-14)`

D

`10^(-18)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the order of magnitude of the equilibrium constant for the reaction: \[ [Ag(NH_3)_2]^+ \leftrightarrow Ag^+ + 2NH_3 \] We are given the standard reduction potentials for two half-reactions: 1. \([Ag(NH_3)_2]^+ + e^- \rightarrow Ag(s) + 2NH_3\) with \(E^\circ = 0.02 \, V\) 2. \(Ag^+ + e^- \rightarrow Ag(s)\) with \(E^\circ = 0.8 \, V\) ### Step 1: Write the half-reactions and their potentials The half-reaction for the formation of silver from silver ion is already given. We can invert the second half-reaction to find the oxidation potential: \[ Ag(s) \rightarrow Ag^+ + e^- \quad (E^\circ = -0.8 \, V) \] ### Step 2: Combine the half-reactions Now, we can add the two half-reactions together. The first half-reaction is: \[ [Ag(NH_3)_2]^+ + e^- \rightarrow Ag(s) + 2NH_3 \quad (E^\circ = 0.02 \, V) \] The inverted second half-reaction is: \[ Ag(s) \rightarrow Ag^+ + e^- \quad (E^\circ = -0.8 \, V) \] Adding these reactions cancels out the electrons: \[ [Ag(NH_3)_2]^+ \rightarrow Ag^+ + 2NH_3 \] ### Step 3: Calculate the overall standard cell potential The overall standard cell potential \(E^\circ_{cell}\) is the sum of the two potentials: \[ E^\circ_{cell} = E^\circ_{[Ag(NH_3)_2]^+} + E^\circ_{Ag^+} \] \[ E^\circ_{cell} = 0.02 \, V - 0.8 \, V = -0.78 \, V \] ### Step 4: Use the Nernst equation At equilibrium, the cell potential \(E_{cell} = 0\). We can use the Nernst equation to relate the cell potential to the equilibrium constant \(K\): \[ E_{cell} = E^\circ_{cell} - \frac{0.059}{n} \log K \] Where \(n\) is the number of electrons transferred (which is 1 in this case). Setting \(E_{cell} = 0\): \[ 0 = -0.78 - \frac{0.059}{1} \log K \] ### Step 5: Solve for \(K\) Rearranging gives: \[ \frac{0.059}{1} \log K = -0.78 \] \[ \log K = \frac{-0.78}{0.059} \] \[ \log K \approx -13.22 \] ### Step 6: Calculate \(K\) Taking the antilog to find \(K\): \[ K \approx 10^{-13.22} \] ### Step 7: Order of magnitude of \(K\) The order of magnitude of \(K\) is approximately \(10^{-13}\). ### Final Answer Thus, the order of magnitude of the equilibrium constant for the reaction is: \[ \text{Order of magnitude of } K \approx 10^{-13} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The equilibrium constant of the reaction : Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V at 298 K is

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

The equilibrium constant of the reaction; Cu(s)+2Ag + (aq)⟶Cu 2+ (aq)+2Ag(s) E o =0.46V at 298K

Given the data 25^(@) C , Ag+ I^(-) to AgI+e^(-) , E^(@) = 0.152V Ag to Ag^(+) + E(-) , E^(@) = - 0.800V What is the value of K_(sp) for AgI?

The hybridisation of Ag in [Ag(NH_3)]_2^(+) complex is

Ag^(+) + e^(-) rarr Ag, E^(0) = + 0.8 V and Zn^(2+) + 2e^(-) rarr Zn, E^(0) = -076 V . Calculate the cell potential for the reaction, 2Ag + Zn^(2+) rarr Zn + 2Ag^(+)

The equivalent constant of the reaction: Cu(s)+2Ag^(+)(aq.) rarr Cu^(2+)(aq.)+2Ag(s) E^(@)=0.46 V at 298 K ,is:

K_(d) for dissociation of [Ag(NH_(3))_(2)]^(+) into Ag^(+) and NH_(3) is 6 xx 10^(-8) . Calculae E^(@) for the following half reaction. Ag(NH_(3))_(2)^(+) +e^(-) rarr Ag +2NH_(3) Given Ag^(+) +e^(-) rarr Ag, E^(@) = 0.799V

Ag^(+) + NH_(3) ltimplies [Ag(NH_(3))]^(+), k_(1)=6.8 xx 10^(-5) [Ag(NH_(3))]^(+) + NH_(3) ltimplies [Ag(NH_(3))_(2)]^(+) , k_(2) = 1.6xx10^(-3) The formation constant of [Ag(NH_(3))_(2)]^(+) is :