Home
Class 12
CHEMISTRY
The conductivity of a saturated solution...

The conductivity of a saturated solution of a sparingly soluble salt `MX_2` is found to be `4 xx 10^(-5) Omega^(-1) cm^(-1)." If "lambda_(m)^(oo) ( M^(2+))=50 Omega^(-1) cm^(2) mol^(-1) and lambda^(oo) (X^(-))= 50 Omega^(-1) cm^(2) mol^(-1)`, the solubility product of the salt is about

A

`2 xx 10^(-10)`

B

`2 xx 10^(-12)`

C

`8 xx 10^(-12)`

D

`8 xx 10^(-11)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility product (Ksp) of the sparingly soluble salt \( MX_2 \), we can follow these steps: ### Step 1: Write the dissociation equation The salt \( MX_2 \) dissociates in water as follows: \[ MX_2 \rightleftharpoons M^{2+} + 2X^{-} \] ### Step 2: Determine the molar conductivity at infinite dilution The molar conductivity at infinite dilution (\( \lambda_m^{\infty} \)) for the salt is given by: \[ \lambda_m^{\infty} = \lambda_m^{\infty}(M^{2+}) + 2 \cdot \lambda_m^{\infty}(X^{-}) \] Substituting the given values: \[ \lambda_m^{\infty} = 50 \, \Omega^{-1} \, cm^2 \, mol^{-1} + 2 \cdot 50 \, \Omega^{-1} \, cm^2 \, mol^{-1} = 50 + 100 = 150 \, \Omega^{-1} \, cm^2 \, mol^{-1} \] ### Step 3: Relate conductivity to molar conductivity The relationship between conductivity (\( K \)) and molar conductivity (\( \lambda_m \)) is given by: \[ \lambda_m = \frac{K \cdot 1000}{s} \] Where \( s \) is the solubility in mol/L. ### Step 4: Rearrange the equation to find solubility Rearranging the equation for solubility: \[ s = \frac{K \cdot 1000}{\lambda_m^{\infty}} \] Substituting the given conductivity \( K = 4 \times 10^{-5} \, \Omega^{-1} \, cm^{-1} \) and \( \lambda_m^{\infty} = 150 \, \Omega^{-1} \, cm^2 \, mol^{-1} \): \[ s = \frac{4 \times 10^{-5} \cdot 1000}{150} = \frac{4 \times 10^{-2}}{150} = 2.67 \times 10^{-4} \, mol/L \] ### Step 5: Write the expression for the solubility product The solubility product \( K_{sp} \) for the dissociation can be expressed as: \[ K_{sp} = [M^{2+}][X^{-}]^2 \] From the dissociation, the concentration of \( M^{2+} \) is \( s \) and the concentration of \( X^{-} \) is \( 2s \): \[ K_{sp} = s \cdot (2s)^2 = s \cdot 4s^2 = 4s^3 \] ### Step 6: Substitute the value of solubility into the Ksp expression Substituting \( s = 2.67 \times 10^{-4} \): \[ K_{sp} = 4 \cdot (2.67 \times 10^{-4})^3 \] Calculating \( (2.67 \times 10^{-4})^3 \): \[ (2.67 \times 10^{-4})^3 = 1.90 \times 10^{-11} \] Thus, \[ K_{sp} = 4 \cdot 1.90 \times 10^{-11} = 7.6 \times 10^{-11} \] ### Step 7: Round to appropriate significant figures Rounding gives: \[ K_{sp} \approx 8 \times 10^{-11} \] ### Final Answer The solubility product \( K_{sp} \) of the salt \( MX_2 \) is approximately \( 8 \times 10^{-11} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The specific conductivity of a saturated solution of AgCl is 3.40xx10^(-6) ohm^(-1) cm^(-1) at 25^(@)C . If lambda_(Ag^(+)=62.3 ohm^(-1) cm^(2) "mol"^(-1) and lambda_(Cl^(-))=67.7 ohm^(-1) cm^(2) "mol"^(-1) , the solubility of AgC at 25^(@)C is:

The solubility of a springly soluble salt AB_(2) in water is 1.0xx10^(-5) mol L^(-1) . Its solubility product is:

If conductivity of water used to make saturated of AgCl is found to be 3.1xx10^(-5)Omega^(-1) cm^(-1) and conductance of the solution of AgCl=4.5xx10^(-5)Omega^(-1)cm^(-1) if lamda_(M)^(0)AgNO_(3)=200Omega^(-1)cm^(2) "mole"^(-1) lamda_(M)^(0)NaNO_(3)=310Omega^(-1)cm^(2) "mole"^(-1) calculate K_(SP) of AgCl

Conductivity of a saturated solution of a sparingly soluble salt AB at 298K is 1.85× 10^(−5) Sm^(−1) . Solubility product of the salt AB at 298K is : [Given Λ^(o)m (AB)=140× 10 ^(−4)Sm^2mol^(−1) ]

The solubility product of a sparingly soluble salt AX_(2) is 3.2xx10^(-11) . Its solubility (in mol L^-1 ) is

The conductivity of saturated solution of Ba_(3) (PO_(4))_(2) is 1.2 xx 10^(-5) Omega^(-1) cm^(-1) . The limiting equivalent conductivities of BaCl_(2), K_(3)PO_(4) and KCl are 160, 140 and 100 Omega^(-1) cm^(2)eq^(-1) , respectively. The solubility product of Ba_(3)(PO_(4))_(2) is

The solubility product of a sparingly soluble salt AX_(2) is 3.2xx10^(-11) . Its solubility (in mo//L ) is

The solubility in water of a sparingly soluble salt AB_2 is 1.0 xx 10 ^(-5) " mol " L^(-1) . Its solubility product number will be

For a saturated solution of AgCl at 25^(@)C,k=3.4xx10^(-6) ohm^(-1)cm^(-1) and that of H_(2)O (l) used is 2.02xx10^(-6) ohm^(-1) cm^(-1),lambda_(m)^(@) for AgCl is 138 ohm^(-1) cm^(2) "mol"^(-1) then the solubility of AgCl in "mole"s per litre will be:

Calculate the solubilty and solubility product of Co_(2) [Fe(CN)_(6)] is water at 25^(@)C from the following data: conductivity of a saturated solution of Co_(2)[Fe(CN)_(6)] is 2.06 xx 10^(-6) Omega^(-1) cm^(-1) and that of water used 4.1 xx 10^(-7) Omega^(-1) cm^(-1) . The ionic molar conductivites of Co^(2+) and Fe(CN)_(6)^(4-) are 86.0 Omega^(-1)cm^(-1) mol^(-1) and 44.0 Omega^(-1) cm^(-1) mol^(-1) .