Home
Class 12
MATHS
If a1,a2,a3….a(2n+1) are in A.P then (...

If `a_1,a_2,a_3….a_(2n+1)` are in A.P then
`(a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n)` is equal to

A

`n-1`

B

`(n(a_(1)+2_(2n)))/(sqrt(a_(1))+sqrt(a_(n+1)))`

C

`(n-1)/(sqrt(a_(1))+sqrt(a_(n+1)))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

If a_1,a_2,a_3,……a_n are in A.P. [1/(a_1a_n)+1/(a_2a_(n-1))+1/(a_3a_(n-2))+..+1/(a_na_1)]

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

Let a_1,a_2,a_3 …. a_n be in A.P. If 1/(a_1a_n)+1/(a_2a_(n-1)) +… + 1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n) , then k is equal to :

If a_r>0, r in N and a_1.a_2,....a_(2n) are in A.P then (a_1+a_2)/(sqrta_1+sqrta_2)+(a_2+a_(2n-1))/(sqrta_2+sqrta_3)+.....+(a_n+a_(n+1))/(sqrt a_n+sqrta_(n+1))=

a1,a2,a3.....an are in H.P. (a_(1))/(a_(2)+a_(3)+ . . .+a_(n)),(a_(2))/(a_(1)+a_(3)+ . . . +a_(n)),(a_(3))/(a_(1)+a_(2)+a_(4)+ . . .+a_(n)), . . .,(a_(n))/(a_(1)+a_(2)+ . . . +a_(n-1)) are in

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1,a_2,……….,a_n are in H.P. then expression a1a2+a2a3+......+a_n-1an

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to