Home
Class 12
MATHS
Find the sum n terms of seires tan theta...

Find the sum n terms of seires `tan theta+1/2tan(theta/2 )+1/(2^2)tan(theta/(2^2))+1/(2^3)tan(theta/(2^3))+....`

A

`theta - cot 2theta`

B

`1/theta - 2 cot 2 theta`

C

`theta - 1/2 cot 2 theta`

D

`1/theta - 1/2 cot theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S_n = \tan \theta + \frac{1}{2} \tan \left( \frac{\theta}{2} \right) + \frac{1}{2^2} \tan \left( \frac{\theta}{2^2} \right) + \frac{1}{2^3} \tan \left( \frac{\theta}{2^3} \right) + \ldots \] up to \( n \) terms, we can follow these steps: ### Step 1: Identify the general term of the series The general term of the series can be expressed as: \[ T_k = \frac{1}{2^{k-1}} \tan \left( \frac{\theta}{2^{k-1}} \right) \] for \( k = 1, 2, \ldots, n \). ### Step 2: Write the sum of the series The sum of the first \( n \) terms can be written as: \[ S_n = \sum_{k=1}^{n} T_k = \sum_{k=1}^{n} \frac{1}{2^{k-1}} \tan \left( \frac{\theta}{2^{k-1}} \right) \] ### Step 3: Use the identity for tangent We know that: \[ \tan \theta = \frac{2 \tan \left( \frac{\theta}{2} \right)}{1 - \tan^2 \left( \frac{\theta}{2} \right)} \] This can help us express \( \tan \left( \frac{\theta}{2^k} \right) \) in terms of \( \tan \theta \) and \( \tan \left( \frac{\theta}{2^{k-1}} \right) \). ### Step 4: Express the series in a simplified form By applying the tangent identity recursively, we can express each term in terms of \( \tan \theta \) and \( \tan \left( \frac{\theta}{2^{k-1}} \right) \). ### Step 5: Sum the series After simplifying, we find that the sum can be expressed as: \[ S_n = \tan \theta - \cos \theta + \frac{1}{2^n} \cos \left( \frac{\theta}{2^n} \right) \] ### Final Result Thus, the sum of the first \( n \) terms of the series is: \[ S_n = \tan \theta - \cos \theta + \frac{1}{2^n} \cos \left( \frac{\theta}{2^n} \right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If "tan" 2 theta "tan" theta =1, "then" theta =

Solve : tan 3theta tan 2 theta = 1

Prove that : (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

Prove the identity ((1-tan theta)/(1-cot theta))^(2)=tan^(2)theta

If theta_1,theta_2,theta_3 are the three values of thetain[0,2pi] for which tantheta=lambda then the value of tan(theta_1)/3tan(theta_2)/3+tan(theta_2)/3tan(theta_3)/3+tan(theta_3)/3tan(theta_1)/3 is equal to

Find the general value of theta from the equation tantheta+tan3theta=2tan2theta .

Prove that : sec^(4)theta-tan^(4)theta=1+2tan^(2)theta

Prove that : (sec 8theta - 1)/(sec 4theta - 1) = (tan 8theta)/(tan 2theta)

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

Prove that cos theta (tan theta +2) (2tan theta +1) = 2 sec theta + 5 sin theta