Home
Class 12
MATHS
sum (k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is...

` sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2))` is equal to

A

`tan^(-1) (n+1)`

B

`tan^(-1)(n+2)`

C

`tan^(-1).n/(n+2)`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{k=1}^{n} \tan^{-1}\left(\frac{1}{1+k+k^2}\right) \] ### Step 1: Rewrite the term inside the summation We start by rewriting the term \(\tan^{-1}\left(\frac{1}{1+k+k^2}\right)\). We can use the identity for the difference of arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab} \right) \] We can express \(\frac{1}{1+k+k^2}\) in terms of \(\tan^{-1}\): \[ \tan^{-1}\left(\frac{1}{1+k+k^2}\right) = \tan^{-1}(k+1) - \tan^{-1}(k) \] ### Step 2: Substitute into the summation Now we substitute this expression back into the summation: \[ \sum_{k=1}^{n} \tan^{-1}\left(\frac{1}{1+k+k^2}\right) = \sum_{k=1}^{n} \left(\tan^{-1}(k+1) - \tan^{-1}(k)\right) \] ### Step 3: Recognize the telescoping series Notice that this summation is a telescoping series. The terms will cancel out: \[ = \left(\tan^{-1}(2) - \tan^{-1}(1)\right) + \left(\tan^{-1}(3) - \tan^{-1}(2)\right) + \ldots + \left(\tan^{-1}(n+1) - \tan^{-1}(n)\right) \] ### Step 4: Simplify the result When we expand this, we see that all intermediate terms cancel: \[ = \tan^{-1}(n+1) - \tan^{-1}(1) \] ### Step 5: Final result Thus, the final result of the summation is: \[ \sum_{k=1}^{n} \tan^{-1}\left(\frac{1}{1+k+k^2}\right) = \tan^{-1}(n+1) - \tan^{-1}(1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

sum_(k=0)^(5)(-1)^(k)2k

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

The sum sum _ ( k = 1 ) ^ ( 20 ) k ( 1 ) / ( 2 ^ k ) is equal to l - (11) /(m ^ ( 19 )) . The value of ( l + m ) is ______ .

Find sum_(k=1)^ntan^(- 1)(2k)/(2+k^2+k^4)

The limit of (1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo is equal to (1)/(lamda), then lamda =

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

The sum sum_(k=1)^oocot^(-1)(2k^2) equals