Home
Class 12
MATHS
For the series 2+12+36+80+150+252 +….., ...

For the series `2+12+36+80+150+252 +…..`, the value of `lim_(n to oo) T/(n^(3))` is (where `T_(n)` is `n^(th)` term )

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

The value of lim_(nto oo){3sqrt(n^2-n^3)+n} , is

lim_(n rarr oo)2^(1/n)

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(n to oo)(n!)/((n+1)!-n!)

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt is

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :