Home
Class 12
MATHS
If a = sum(r=1)^(oo) 1/(r^(2)), b = sum...

If ` a = sum_(r=1)^(oo) 1/(r^(2)), b = sum_(r=1)^(oo) 1/((2r-1)^(2)),` then `(3a)/b` is equal to _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{3a}{b} \), where: - \( a = \sum_{r=1}^{\infty} \frac{1}{r^2} \) - \( b = \sum_{r=1}^{\infty} \frac{1}{(2r-1)^2} \) ### Step 1: Calculate \( a \) The series \( a \) is a well-known series, which converges to: \[ a = \sum_{r=1}^{\infty} \frac{1}{r^2} = \frac{\pi^2}{6} \] ### Step 2: Calculate \( b \) The series \( b \) can be expressed as: \[ b = \sum_{r=1}^{\infty} \frac{1}{(2r-1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{r=1}^{\infty} \frac{1}{(2r)^2} \] The first term is \( a \), and the second term can be simplified as follows: \[ \sum_{r=1}^{\infty} \frac{1}{(2r)^2} = \sum_{r=1}^{\infty} \frac{1}{4r^2} = \frac{1}{4} \sum_{r=1}^{\infty} \frac{1}{r^2} = \frac{1}{4} a \] Thus, we can write: \[ b = a - \frac{1}{4} a = \frac{3}{4} a \] ### Step 3: Calculate \( \frac{3a}{b} \) Now substituting \( b \) into the expression \( \frac{3a}{b} \): \[ \frac{3a}{b} = \frac{3a}{\frac{3}{4}a} = \frac{3a \cdot 4}{3a} = 4 \] ### Final Answer Thus, the value of \( \frac{3a}{b} \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a=sum_(r=1)^oo 1/r^4 then sum_(r=1)^oo 1/((2r-1)^4)=

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

If sum_(r=1)^(oo) (C^r)/(r!) =1 then C =

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of sum _(r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :