Home
Class 12
MATHS
If the sequence a1, a2, a3,....... an ,...

If the sequence `a_1, a_2, a_3,....... a_n ,dot` forms an A.P., then prove that `a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the sequence a_1,a_2,a_3, ,a_n from an A.P. Then the value of a1 2-a2 2+a3 2-+a2n-1 2-a2n2 is (2n)/(n-1)(a2n2-a1 2) (b) n/(2n-1)(a1 2-a2n2) n/(n+1)(a1 2-a2n2) (d) n/(n-1)(a1 2+a2n2)

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

a_1,a_2,a_3 ,…., a_n from an A.P. Then the sum sum_(i=1)^10 (a_i a_(i+1)a_(i+2))/(a_i + a_(i+2)) where a_1=1 and a_2=2 is :

If a_1,a_2,……….,a_n are in H.P. then expression a1a2+a2a3+......+a_n-1an

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_1))