Home
Class 12
MATHS
Sum of series n+(n-1)x+(n-2)x^2+...........

Sum of series `n+(n-1)x+(n-2)x^2+........+2x^(n-2)+x^(n-1).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( S_n = n + (n-1)x + (n-2)x^2 + \ldots + 2x^{n-2} + x^{n-1} \), we can follow these steps: ### Step 1: Define the series Let: \[ S_n = n + (n-1)x + (n-2)x^2 + \ldots + 2x^{n-2} + x^{n-1} \] ### Step 2: Multiply the series by \( x \) Now, multiply the entire series \( S_n \) by \( x \): \[ x S_n = n x + (n-1)x^2 + (n-2)x^3 + \ldots + 2x^{n-1} + x^n \] ### Step 3: Subtract the second equation from the first Now, we subtract the equation \( x S_n \) from \( S_n \): \[ S_n - x S_n = n + (n-1)x + (n-2)x^2 + \ldots + 2x^{n-2} + x^{n-1} - (n x + (n-1)x^2 + (n-2)x^3 + \ldots + 2x^{n-1} + x^n) \] ### Step 4: Simplify the left-hand side This simplifies to: \[ (1 - x) S_n = n - (x + x^2 + x^3 + \ldots + x^n) \] ### Step 5: Recognize the geometric series The series \( x + x^2 + x^3 + \ldots + x^n \) is a geometric series with first term \( x \) and common ratio \( x \). The sum of this series can be calculated using the formula for the sum of a geometric series: \[ \text{Sum} = \frac{a(r^n - 1)}{r - 1} \] where \( a \) is the first term and \( r \) is the common ratio. Here, \( a = x \) and \( r = x \): \[ x + x^2 + x^3 + \ldots + x^n = x \frac{x^n - 1}{x - 1} \] ### Step 6: Substitute back into the equation Substituting this back into our equation gives: \[ (1 - x) S_n = n - x \frac{x^n - 1}{x - 1} \] ### Step 7: Solve for \( S_n \) Now, we can solve for \( S_n \): \[ S_n = \frac{n - x \frac{x^n - 1}{x - 1}}{1 - x} \] ### Step 8: Simplify the expression To simplify further: \[ S_n = \frac{n(1-x) - x(x^n - 1)}{(1-x)(x-1)} \] This can be rearranged to: \[ S_n = \frac{n(1-x) + x(x^n - 1)}{(1-x)^2} \] ### Final Result Thus, the sum of the series is: \[ S_n = \frac{n(1-x) + x^{n+1} - x}{(1-x)^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series: 1. n+2.(n-1)+3.(n-2)++(n-1). 2+n .1.

Find the sum of the series: 1. n+2.(n-1)+3.(n-2)++(n-1). 2+n .1.

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)+....+n(1-x)(1-2x) (1-3x)............[1-(n-1)x].

Find the sum of the series tanx +2tan2x+2^2tan2^2 x+…+ 2^(n-1)tan2^(n-1)x

Find the coefficient of x^n in (1+x/(1!)+(x^2)/(2!)+........+(x^n)/(n !))^2 .

If sum of all the coefficient of even powers in (1-x+x^(2)-x^(3)....x^(2n))(1+x^()+x^(2)....+x^(2n)) is 61 then n is equal to

Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^+(x+2)^(n-3)(x+1)^2++(x+1)^(n-1) (x+2)^(n-2)-(x+1)^n b. (x+2)^(n-2)-(x+1)^(n-1) c. (x+2)^n-(x+1)^n d. none of these

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

it is known for x ne 1 that 1+x+x^(2)+"….."+x^(n-1) = (1-x^(n))/(1-x) , hence find the sum of the series S = 1+2x+3x^(2)+"….."+(n+1)x^(n) .

The sum of n terms of the series (1)/(1 + x) + (2)/(1 + x^(2)) + (4)/(1 + x^(4)) + ……… is