Home
Class 12
MATHS
If 0 lt theta lt pi//2 then .find the l...

If ` 0 lt theta lt pi//2` then .find the least value of `tan theta + cot theta `

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of \( \tan \theta + \cot \theta \) for \( 0 < \theta < \frac{\pi}{2} \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality**: According to the AM-GM inequality, for any two non-negative numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] Here, let \( a = \tan \theta \) and \( b = \cot \theta \). 2. **Set Up the Inequality**: Substitute \( a \) and \( b \) into the AM-GM inequality: \[ \frac{\tan \theta + \cot \theta}{2} \geq \sqrt{\tan \theta \cdot \cot \theta} \] 3. **Simplify the Right Side**: We know that \( \tan \theta \cdot \cot \theta = 1 \) (since \( \cot \theta = \frac{1}{\tan \theta} \)): \[ \sqrt{\tan \theta \cdot \cot \theta} = \sqrt{1} = 1 \] 4. **Rewrite the Inequality**: Thus, we have: \[ \frac{\tan \theta + \cot \theta}{2} \geq 1 \] 5. **Multiply Both Sides by 2**: Multiplying both sides by 2 gives: \[ \tan \theta + \cot \theta \geq 2 \] 6. **Conclusion**: The least value of \( \tan \theta + \cot \theta \) is 2. This minimum occurs when \( \tan \theta = \cot \theta \), which happens when \( \theta = \frac{\pi}{4} \). ### Final Answer: The least value of \( \tan \theta + \cot \theta \) is \( 2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta = sqrt(2) and (3pi)/2 lt theta lt 2pi , find the value of (1+tan theta + cosec theta)/(1-cot theta - cosec theta) .

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta

If tantheta + cot theta = 2 , find the value of tan^2 theta + cot^2 theta

If cos theta = - 3/5 and pi lt theta lt (3pi)/2 , find the value of (sec theta - tan theta)/(cosec theta + cot theta)

If tan theta = - 4/3 , (3pi)/2 lt theta lt 2pi , find the value of 9sec^2 theta-4 cot theta.

If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .

If tan theta = a/b , where 0lttheta lt pi/4 and bgtagt0 , find the value of sin 2theta, cos 2theta and tan 2theta.

If pi lt theta lt (3pi)/(2) , then find the value of sqrt((1-cos2theta)/(1+cos 2 theta)) .

If 0 lt theta lt pi, then minimum value of 3sintheta+cosec^3 theta is

If cot theta = 1 , find the value of : 5 tan^2 theta + 2 sin^2 theta - 3