Home
Class 12
MATHS
Find the value of 2551 S where S = sum(...

Find the value of 2551 S where `S = sum_(k=1)^(50) k/(k^(4)+k^(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 2551 S \) where \( S = \sum_{k=1}^{50} \frac{k}{k^4 + k^2 + 1} \), we can follow these steps: ### Step 1: Simplify the Denominator The denominator can be rewritten as: \[ k^4 + k^2 + 1 = (k^2 + 1)^2 - k^2 \] This can be factored further using the difference of squares: \[ = (k^2 + 1 - k)(k^2 + 1 + k) \] Thus, we have: \[ k^4 + k^2 + 1 = (k^2 - k + 1)(k^2 + k + 1) \] ### Step 2: Rewrite the Sum Now we can rewrite \( S \): \[ S = \sum_{k=1}^{50} \frac{k}{(k^2 - k + 1)(k^2 + k + 1)} \] ### Step 3: Partial Fraction Decomposition We will use partial fractions to break this down: \[ \frac{k}{(k^2 - k + 1)(k^2 + k + 1)} = \frac{A}{k^2 - k + 1} + \frac{B}{k^2 + k + 1} \] Multiplying through by the denominator: \[ k = A(k^2 + k + 1) + B(k^2 - k + 1) \] Expanding and combining like terms gives: \[ k = (A + B)k^2 + (A - B)k + (A + B) \] Setting coefficients equal, we have: 1. \( A + B = 0 \) 2. \( A - B = 1 \) 3. \( A + B = 0 \) From \( A + B = 0 \), we can express \( B = -A \). Substituting into the second equation: \[ A - (-A) = 1 \implies 2A = 1 \implies A = \frac{1}{2}, B = -\frac{1}{2} \] ### Step 4: Substitute Back into the Sum Now substituting back, we have: \[ S = \sum_{k=1}^{50} \left( \frac{1/2}{k^2 - k + 1} - \frac{1/2}{k^2 + k + 1} \right) \] This can be simplified to: \[ S = \frac{1}{2} \sum_{k=1}^{50} \left( \frac{1}{k^2 - k + 1} - \frac{1}{k^2 + k + 1} \right) \] ### Step 5: Telescoping Series Notice that this is a telescoping series: \[ S = \frac{1}{2} \left( \frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{7} + \ldots + \frac{1}{2500} - \frac{1}{2551} \right) \] Most terms cancel out, and we are left with: \[ S = \frac{1}{2} \left( 1 - \frac{1}{2551} \right) \] Calculating this gives: \[ S = \frac{1}{2} \cdot \frac{2550}{2551} = \frac{1275}{2551} \] ### Step 6: Calculate \( 2551 S \) Now we can find \( 2551 S \): \[ 2551 S = 2551 \cdot \frac{1275}{2551} = 1275 \] ### Final Answer Thus, the value of \( 2551 S \) is: \[ \boxed{1275} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=0)^(5)(-1)^(k)2k

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

Find the value of the sum_(k=0)^359 k.cos k^@ .

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Let S_(k) , where k = 1,2 ,....,100, denotes the sum of the infinite geometric series whose first term is (k -1)/(k!) and the common ratio is (1)/(k) . Then, the value of (100^(2))/(100!) +sum_(k=2)^(100) | (k^(2) - 3k +1) S_(k)| is....

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))

Evaluate sum_(k=0)^(5)k^(2)

Find the value of 3sum_(n=1)^(oo) {1/(pi) sum_(k=1)^(oo) cot^(-1)(1+2sqrt(sum_(r=1)^(k)r^(3)))}^(n)

Evaluate sum_(k=1)^(11)(2+3^k)

Evaluate : sum_(k=1)^n (2^k+3^(k-1))