Home
Class 12
MATHS
If 1^4/1.3+2^4+3.5+3^4/5.7+…………+n^4/(2n-...

If `1^4/1.3+2^4+3.5+3^4/5.7+…………+n^4/(2n-1)(2n+1)= (f(n)/48+n/(16(2n+1)` Then `f(n)` is equal to (A) `n^4/(3(2n-1)` (B) `n(4n^2+6n+5)` (C) `n(4n^2+3)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

(1^4)/1.3+(2^4)/3.5+(3^4)/5.7+......+n^4/((2n-1)(2n+1))=(n(4n^2+6n+5))/48+n/(16(2n+1)

1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

Let f(n)=1+1/2+1/3++1/ndot Then f(1)+f(2)+f(3)++f(n) is equal to (a) nf(n)-1 (b) (n+1)f(n)-n (c) (n+1)f(n)+n (d) nf(n)+n

If A=[(2,-4),(1,-1)] the value of A^n is (A) [(3^n,(-4)^n),(1,(-1)^n)] (B) [(3n,-4n),(n,n)] (C) [(2+n,5-n),(n,-n)] (D) none of these

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

If ^n C_3+^n C_4>^(n+1)C_3 , then a. n >6 b. n >7 c. n<6 d. none of these

The sum of the series: 1/((log)_2 4)+1/((log)_4 4)+1/((log)_8 4)++1/((log)_(2n)4) is (n(n+1))/2 (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/4 (d) none of these

lim_(n->oo)(-3n+(-1)^n)/(4n-(-1)^n) is equal to a. -3/4 b. 0 if n is even c. -3/4 if n is odd d. none of these

The solution of the equation sin^3x+sinxcosx+cos^3x=1 is (n∈N) (a) 2npi (b) (4n+1)pi/2 (c) (2n+1)pi (d) None of these

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then