Home
Class 12
MATHS
Find the minimum value of (a+1/a)^(2) +...

Find the minimum value of `(a+1/a)^(2) +(b+1/b)^(2)` where `a gt 0, b gt 0 ` and `a+b = sqrt(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( (a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \) given that \( a > 0, b > 0 \) and \( a + b = \sqrt{15} \), we can follow these steps: ### Step 1: Use the AM-GM Inequality We know that for any positive \( x \), the inequality \( x + \frac{1}{x} \geq 2 \) holds. Thus, we can apply this to both \( a \) and \( b \): \[ a + \frac{1}{a} \geq 2 \quad \text{and} \quad b + \frac{1}{b} \geq 2 \] ### Step 2: Square the Inequalities Squaring both sides gives us: \[ (a + \frac{1}{a})^2 \geq 4 \quad \text{and} \quad (b + \frac{1}{b})^2 \geq 4 \] ### Step 3: Sum the Inequalities Adding these inequalities together, we have: \[ (a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \geq 4 + 4 = 8 \] ### Step 4: Apply the Cauchy-Schwarz Inequality To find a more precise lower bound, we can apply the Cauchy-Schwarz inequality: \[ (a + b)\left((a + \frac{1}{a})^2 + (b + \frac{1}{b})^2\right) \geq (a + b + \frac{1}{a} + \frac{1}{b})^2 \] Given \( a + b = \sqrt{15} \), we need to find \( \frac{1}{a} + \frac{1}{b} \). ### Step 5: Express \( \frac{1}{a} + \frac{1}{b} \) Using the identity \( \frac{1}{a} + \frac{1}{b} = \frac{a + b}{ab} \), we can express this in terms of \( a + b \) and \( ab \). ### Step 6: Find \( ab \) using \( a + b \) Let \( ab = k \). By the AM-GM inequality, we have: \[ \frac{a + b}{2} \geq \sqrt{ab} \Rightarrow \frac{\sqrt{15}}{2} \geq \sqrt{k} \Rightarrow k \leq \frac{15}{4} \] ### Step 7: Substitute back into the Cauchy-Schwarz Inequality Now we can substitute back into our earlier inequality: \[ \sqrt{15}\left((a + \frac{1}{a})^2 + (b + \frac{1}{b})^2\right) \geq \left(\sqrt{15} + \frac{1}{a} + \frac{1}{b}\right)^2 \] ### Step 8: Minimize the Expression To minimize \( (a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \), we can set \( a = b \). Therefore, \( 2a = \sqrt{15} \Rightarrow a = b = \frac{\sqrt{15}}{2} \). ### Step 9: Calculate the Minimum Value Substituting \( a = b = \frac{\sqrt{15}}{2} \) into the expression: \[ (a + \frac{1}{a})^2 = \left(\frac{\sqrt{15}}{2} + \frac{2}{\sqrt{15}}\right)^2 = \left(\frac{\sqrt{15}}{2} + \frac{2\sqrt{15}}{15}\right)^2 = \left(\frac{\sqrt{15}}{2} + \frac{2\sqrt{15}}{15}\right)^2 \] Calculating this gives: \[ = \left(\frac{15 + 4}{2\sqrt{15}}\right)^2 = \left(\frac{19}{2\sqrt{15}}\right)^2 = \frac{361}{60} \] Thus, the minimum value of \( (a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \) is: \[ \frac{361}{30} \] ### Final Answer The minimum value of \( (a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \) is \( \frac{361}{30} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum distance of origin from the curve ax^(2) +2bxy+ay^(2)=c where a gt b gt c gt0

The minmumu value of the fucntion f(x)=a^2/x+b^2/(a-x),a gt 0, b gt 0 , in (0,a) is

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

Find the area bounded by (|x|)/(a)+(|y|)/(b)=1 , where a gt 0 and b gt 0

The least value of the function f(x) = ax + (b)/(x) (x gt 0, a gt 0, b gt 0)

Minimum value of a^2cos e c^2theta+b^2sec^2theta is (where a b >0 )

If 2x=a-(1)/(a) , where a gt0 , what is the value of sqrt((x^(2)+1))+x ?

If a,b,c,d be four consecutive coefficients in the binomial expansion of (1+x)^(n) , then value of the expression (((b)/(b+c))^(2)-(ac)/((a+b)(c+d))) (where x gt 0 and n in N ) is

The minimum value of ((A^(2) +A+1) (B^(2) +B+1) (C^(2) +C+1 )(D^(2) +D+1 ))/(ABCD) where A,B,C,D gt 0 is :

If a gt 0 , then minimum value of a + 2a^2+ a^3 + 15+ a^(-1) + a^(-3) + a^(-4) is