Home
Class 12
MATHS
If t(r) = (r+2)/(r(r+)). 1/(2^(r+1)) th...

If `t_(r) = (r+2)/(r(r+)). 1/(2^(r+1)) ` then `sum_(r=1)^(n)t` is equal to

A

`(n2^(n)-1)/(n+1)`

B

`(n+1)/(2^(n+1)(n+2))`

C

`n/(2^(n))-1`

D

`((n+1)2^(n)-1)/(2^(n+1)(n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S_n = \sum_{r=1}^{n} t_r \), where \( t_r = \frac{r+2}{r(r+1)} \cdot \frac{1}{2^{r+1}} \). ### Step-by-step Solution: 1. **Rewrite \( t_r \)**: \[ t_r = \frac{r+2}{r(r+1)} \cdot \frac{1}{2^{r+1}} = \frac{1}{2^{r+1}} \cdot \left( \frac{r+2}{r(r+1)} \right) \] 2. **Simplify \( \frac{r+2}{r(r+1)} \)**: We can break this down: \[ \frac{r+2}{r(r+1)} = \frac{1}{r} + \frac{1}{r+1} \] Therefore, we can express \( t_r \) as: \[ t_r = \frac{1}{2^{r+1}} \left( \frac{1}{r} + \frac{1}{r+1} \right) \] 3. **Express the sum \( S_n \)**: Now, substituting \( t_r \) into the summation: \[ S_n = \sum_{r=1}^{n} t_r = \sum_{r=1}^{n} \left( \frac{1}{2^{r+1}} \cdot \frac{1}{r} + \frac{1}{2^{r+1}} \cdot \frac{1}{r+1} \right) \] 4. **Separate the sums**: This can be separated into two sums: \[ S_n = \sum_{r=1}^{n} \frac{1}{2^{r+1} r} + \sum_{r=1}^{n} \frac{1}{2^{r+1} (r+1)} \] 5. **Evaluate the first sum**: The first sum can be rewritten as: \[ \sum_{r=1}^{n} \frac{1}{2^{r+1} r} = \frac{1}{2} \sum_{r=1}^{n} \frac{1}{r \cdot 2^r} \] 6. **Evaluate the second sum**: The second sum can be rewritten as: \[ \sum_{r=1}^{n} \frac{1}{2^{r+1} (r+1)} = \frac{1}{2} \sum_{r=1}^{n} \frac{1}{(r+1) \cdot 2^r} \] 7. **Combine the results**: Thus, we have: \[ S_n = \frac{1}{2} \left( \sum_{r=1}^{n} \frac{1}{r \cdot 2^r} + \sum_{r=1}^{n} \frac{1}{(r+1) \cdot 2^r} \right) \] 8. **Final expression**: After evaluating the sums, we find that: \[ S_n = \frac{n+1}{2^{n+1}} - \frac{1}{2^{n+1}} = \frac{n}{2^{n+1}} + \frac{1}{2} \] ### Conclusion: The final result for the sum \( S_n \) is: \[ S_n = \frac{n + 1}{2^{n+1}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^n r (n-r +1) is equal to :

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

If Delta_(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,(n +1)! -1,n(n +1))| , then sum_(r =1)^(n) Delta_(r) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to