Home
Class 12
MATHS
sum(i=1)^(n) sum(i=1)^(n) i is equal to...

`sum_(i=1)^(n) sum_(i=1)^(n) i` is equal to

A

`(n(n+1))/(2)`

B

`(n(n+1)^(2))/2`

C

`(n^(2)(n+1))/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{i=1}^{n} \sum_{j=1}^{n} j \), we can follow these steps: ### Step 1: Understand the Inner Summation The inner summation \( \sum_{j=1}^{n} j \) represents the sum of the first \( n \) natural numbers. We can express this sum using the formula: \[ \sum_{j=1}^{n} j = \frac{n(n + 1)}{2} \] ### Step 2: Substitute the Inner Summation Now, we substitute the result of the inner summation back into the outer summation: \[ \sum_{i=1}^{n} \sum_{j=1}^{n} j = \sum_{i=1}^{n} \left( \frac{n(n + 1)}{2} \right) \] ### Step 3: Simplify the Outer Summation Since \( \frac{n(n + 1)}{2} \) is a constant with respect to \( i \), we can factor it out of the outer summation: \[ \sum_{i=1}^{n} \left( \frac{n(n + 1)}{2} \right) = \frac{n(n + 1)}{2} \sum_{i=1}^{n} 1 \] ### Step 4: Evaluate the Remaining Summation The summation \( \sum_{i=1}^{n} 1 \) simply counts the number of terms from 1 to \( n \), which is \( n \): \[ \sum_{i=1}^{n} 1 = n \] ### Step 5: Combine the Results Now, we can combine our results: \[ \frac{n(n + 1)}{2} \cdot n = \frac{n^2(n + 1)}{2} \] ### Final Answer Thus, the value of \( \sum_{i=1}^{n} \sum_{j=1}^{n} j \) is: \[ \frac{n^2(n + 1)}{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

The sum sum_(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity, then sum_(i=1)^(n-1)(1)/(2-alpha^(i)) is equal to:

sum_(r=1)^n r (n-r +1) is equal to :

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

If A_(i)= [(2^(-i),3^(-i)),(3^(-i),2^(-i))],then sum_(i=1)^(oo) det (A_(i)) is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )