Home
Class 12
MATHS
If a(1) = 2 and a(n) - a(n-1) = 2n (n ge...

If `a_(1) = 2` and `a_(n) - a_(n-1) = 2n (n ge 2)`, find the value of `a_(1) + a_(2) + a_(3)+…+a_(20)`.

A

2960

B

3080

C

3560

D

4120

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_1 + a_2 + a_3 + \ldots + a_{20} \) given that \( a_1 = 2 \) and \( a_n - a_{n-1} = 2n \) for \( n \geq 2 \). ### Step-by-Step Solution: 1. **Identify the first term:** \[ a_1 = 2 \] 2. **Find \( a_2 \):** Using the relation \( a_n - a_{n-1} = 2n \): \[ a_2 - a_1 = 2 \times 2 \implies a_2 - 2 = 4 \implies a_2 = 6 \] 3. **Find \( a_3 \):** \[ a_3 - a_2 = 2 \times 3 \implies a_3 - 6 = 6 \implies a_3 = 12 \] 4. **Find \( a_4 \):** \[ a_4 - a_3 = 2 \times 4 \implies a_4 - 12 = 8 \implies a_4 = 20 \] 5. **Find \( a_5 \):** \[ a_5 - a_4 = 2 \times 5 \implies a_5 - 20 = 10 \implies a_5 = 30 \] 6. **Observe the pattern:** We can see that the differences \( a_n - a_{n-1} \) are \( 4, 6, 8, 10, \ldots \), which can be expressed as \( 2n \). 7. **General formula for \( a_n \):** We can derive a general formula for \( a_n \): \[ a_n = a_1 + \sum_{k=2}^{n} (a_k - a_{k-1}) = 2 + \sum_{k=2}^{n} 2k \] The sum \( \sum_{k=2}^{n} 2k = 2 \sum_{k=2}^{n} k = 2 \left( \frac{n(n+1)}{2} - 1 \right) = n(n+1) - 2 \). Hence, we have: \[ a_n = 2 + n(n+1) - 2 = n(n+1) \] 8. **Calculate \( a_n \) for \( n = 1 \) to \( 20 \):** \[ a_n = n(n + 1) \] Therefore: \[ a_1 = 1 \cdot 2 = 2 \] \[ a_2 = 2 \cdot 3 = 6 \] \[ a_3 = 3 \cdot 4 = 12 \] \[ a_4 = 4 \cdot 5 = 20 \] \[ a_5 = 5 \cdot 6 = 30 \] \[ \vdots \] \[ a_{20} = 20 \cdot 21 = 420 \] 9. **Sum \( a_1 + a_2 + \ldots + a_{20} \):** \[ S = \sum_{n=1}^{20} a_n = \sum_{n=1}^{20} n(n + 1) \] This can be split into: \[ S = \sum_{n=1}^{20} n^2 + \sum_{n=1}^{20} n \] Using formulas: - \( \sum_{n=1}^{N} n = \frac{N(N + 1)}{2} \) - \( \sum_{n=1}^{N} n^2 = \frac{N(N + 1)(2N + 1)}{6} \) For \( N = 20 \): \[ \sum_{n=1}^{20} n = \frac{20 \cdot 21}{2} = 210 \] \[ \sum_{n=1}^{20} n^2 = \frac{20 \cdot 21 \cdot 41}{6} = 2870 \] Therefore: \[ S = 2870 + 210 = 3080 \] ### Final Answer: \[ a_1 + a_2 + a_3 + \ldots + a_{20} = 3080 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1)=3 and a_(n)=2a_(n-1)+5 , find a_(4) .

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

The terms of a sequence are defined by a_(n)=3a_(n-1)-a_(n-2) for n gt 2 . What is the value of a_(5) if a_(1)=4 and a_(2)=3 ?

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

For an increasing G.P. a_(1), a_(2), a_(3),.....a_(n), " If " a_(6) = 4a_(4), a_(9) - a_(7) = 192 , then the value of sum_(l=1)^(oo) (1)/(a_(i)) is

If a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1 , then the value of "log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n)) is equal to