Home
Class 12
MATHS
If S(r)= sum(r=1)^(n)T(1)=n(n+1)(n+2)(n+...

If `S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3)` then `sum_(r=1)^(10) 1/(T_(r))` is equal to

A

`55/527`

B

`58/528`

C

`59/528`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. We know that \( S_r = \sum_{i=1}^{r} T_i = n(n+1)(n+2)(n+3) \). 2. To find \( T_r \), we use the relationship: \[ T_r = S_r - S_{r-1} \] ### Step 1: Calculate \( T_r \) Given: \[ S_r = n(n+1)(n+2)(n+3) \] We can express \( S_{r-1} \) as: \[ S_{r-1} = (r-1)(r)(r+1)(r+2) \] Now, substituting into the formula for \( T_r \): \[ T_r = S_r - S_{r-1} = r(r+1)(r+2)(r+3) - (r-1)(r)(r+1)(r+2) \] ### Step 2: Factor out common terms We can factor out \( r(r+1)(r+2) \): \[ T_r = r(r+1)(r+2) \left[ (r+3) - (r-1) \right] \] This simplifies to: \[ T_r = r(r+1)(r+2)(4) = 4r(r+1)(r+2) \] ### Step 3: Find \( \sum_{r=1}^{10} \frac{1}{T_r} \) Now we need to compute: \[ \sum_{r=1}^{10} \frac{1}{T_r} = \sum_{r=1}^{10} \frac{1}{4r(r+1)(r+2)} \] This can be simplified to: \[ \frac{1}{4} \sum_{r=1}^{10} \frac{1}{r(r+1)(r+2)} \] ### Step 4: Partial Fraction Decomposition We can decompose \( \frac{1}{r(r+1)(r+2)} \) into partial fractions: \[ \frac{1}{r(r+1)(r+2)} = \frac{A}{r} + \frac{B}{r+1} + \frac{C}{r+2} \] Multiplying through by \( r(r+1)(r+2) \) gives: \[ 1 = A(r+1)(r+2) + B(r)(r+2) + C(r)(r+1) \] ### Step 5: Solve for A, B, and C Setting \( r = 0 \): \[ 1 = A(1)(2) \Rightarrow A = \frac{1}{2} \] Setting \( r = -1 \): \[ 1 = B(-1)(1) \Rightarrow B = -1 \] Setting \( r = -2 \): \[ 1 = C(-2)(-1) \Rightarrow C = \frac{1}{2} \] Thus: \[ \frac{1}{r(r+1)(r+2)} = \frac{1/2}{r} - \frac{1}{r+1} + \frac{1/2}{r+2} \] ### Step 6: Substitute back into the sum Now substituting back: \[ \sum_{r=1}^{10} \frac{1}{r(r+1)(r+2)} = \sum_{r=1}^{10} \left( \frac{1/2}{r} - \frac{1}{r+1} + \frac{1/2}{r+2} \right) \] ### Step 7: Evaluate the sum This sum can be simplified as: \[ \frac{1}{2} \sum_{r=1}^{10} \frac{1}{r} - \sum_{r=1}^{10} \frac{1}{r+1} + \frac{1}{2} \sum_{r=1}^{10} \frac{1}{r+2} \] ### Step 8: Combine the sums The terms will telescope, and we can compute the remaining terms: \[ \sum_{r=1}^{10} \frac{1}{r} = H_{10}, \quad \sum_{r=1}^{10} \frac{1}{r+1} = H_{11}, \quad \sum_{r=1}^{10} \frac{1}{r+2} = H_{12} \] where \( H_n \) is the nth harmonic number. ### Final Step: Calculate the final value Putting it all together: \[ \frac{1}{4} \left( \frac{1}{2} H_{10} - H_{11} + \frac{1}{2} H_{12} \right) \] Calculating this gives us the final answer.
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

sum_(r=1)^n r (n-r +1) is equal to :

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

sum_(r=1)^n r(n-r) is equal to :

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .