Home
Class 12
MATHS
Let tr=2^(r/2)+2^(-r/2) then sum(r=1)^10...

Let `t_r=2^(r/2)+2^(-r/2)` then `sum_(r=1)^10 t_r^2=`

A

`(2^(21)-1)/(2^(10))+20`

B

`(2^(21)-1)/(2^(10))+19`

C

`(2^(21)-1)/20-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of \( t_r^2 \) from \( r = 1 \) to \( r = 10 \), where \( t_r = 2^{r/2} + 2^{-r/2} \). ### Step-by-Step Solution: 1. **Define \( t_r \)**: \[ t_r = 2^{r/2} + 2^{-r/2} \] 2. **Calculate \( t_r^2 \)**: \[ t_r^2 = (2^{r/2} + 2^{-r/2})^2 \] Expanding this using the formula \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ t_r^2 = (2^{r/2})^2 + 2 \cdot (2^{r/2})(2^{-r/2}) + (2^{-r/2})^2 \] Simplifying each term: \[ t_r^2 = 2^r + 2 + 2^{-r} \] 3. **Set up the summation**: We need to find: \[ \sum_{r=1}^{10} t_r^2 = \sum_{r=1}^{10} (2^r + 2 + 2^{-r}) \] This can be separated into three sums: \[ \sum_{r=1}^{10} t_r^2 = \sum_{r=1}^{10} 2^r + \sum_{r=1}^{10} 2 + \sum_{r=1}^{10} 2^{-r} \] 4. **Calculate each sum**: - **First Sum**: \( \sum_{r=1}^{10} 2^r \) is a geometric series: \[ \sum_{r=1}^{10} 2^r = 2 \cdot \frac{2^{10} - 1}{2 - 1} = 2(2^{10} - 1) = 2^{11} - 2 \] - **Second Sum**: \( \sum_{r=1}^{10} 2 = 2 \cdot 10 = 20 \) - **Third Sum**: \( \sum_{r=1}^{10} 2^{-r} \) is also a geometric series: \[ \sum_{r=1}^{10} 2^{-r} = \frac{1/2}{1 - 1/2} \left(1 - (1/2)^{10}\right) = 1 - \frac{1}{2^{10}} = 1 - \frac{1}{1024} = \frac{1023}{1024} \] 5. **Combine the results**: Now, we can combine all the sums: \[ \sum_{r=1}^{10} t_r^2 = (2^{11} - 2) + 20 + \frac{1023}{1024} \] Simplifying this: \[ = 2^{11} + 18 + \frac{1023}{1024} \] Converting \( 18 \) to a fraction: \[ = 2^{11} + \frac{18432}{1024} + \frac{1023}{1024} = 2^{11} + \frac{18432 + 1023}{1024} = 2^{11} + \frac{19455}{1024} \] ### Final Answer: Thus, the final result is: \[ \sum_{r=1}^{10} t_r^2 = 2^{11} + \frac{19455}{1024} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If t_r=2^(r/3)+2^(-r/3), then sum_(r=1)^100 t_r^3 -3 sum_(r=1)^100t_r+1= (A) (2^101+1)/2^100 (B) (2^101-1)/2^100 (C) (2^201+1)/2^100 (D) none of these

sum_(r=1)^10 r/(1-3r^2+r^4)

If T_r=r(r^2-1), then find sum_(r=2)^oo1/Tdot

If sum_(r=1)^n t_r= (n(n+1)(n+2))/3 then sum _(r=1)^oo 1/t_r= (A) -1 (B) 1 (C) 0 (D) none of these

The r th term of a series is given by t_r=r/(1+r^2+r^4) , then lim(n->oo)sum_(r=1)^n(t_r)

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

If sum_(r=1)^nt_r=sum_(k=1)^nsum_(j=1)^ksum_(i=1)^j2 , then sum_(r=1)^n1/t_r=

Let a_m (m = 1, 2, ,p) be the possible integral values of a for which the graphs of f(x) =ax^2+2bx +b and g(x) =5x^2-3bx-a meets at some point for all real values of b Let t_r = prod_(m=1)^p(r-a_m ) and S_n =sum_(r=1)^n t_r. n in N The minimum possible value of a is

If t_(1)=1,t_(r )-t_( r-1)=2^(r-1),r ge 2 , find sum_(r=1)^(n)t_(r ) .

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to