Home
Class 12
MATHS
The value of sum(n=0)^(m) log ((a^(2n-1...

The value of `sum_(n=0)^(m) log ((a^(2n-1))/(b^(m-1)))(a != 0 , 1 , b != 0 , 1 )` is

A

`m log. (a^(2m))/(b^(m-1))`

B

`(m+1)log. a/(b^(m-1))`

C

`m/2 log -(a^(2m))/(b^(2m-2))`

D

`m/2 log. (a^(2m))/(b^(m+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the sum: \[ S = \sum_{n=0}^{m} \log \left( \frac{a^{2n-1}}{b^{m-1}} \right) \] ### Step-by-Step Solution: 1. **Rewrite the Summation:** We can break down the logarithm using the properties of logarithms: \[ S = \sum_{n=0}^{m} \left( \log(a^{2n-1}) - \log(b^{m-1}) \right) \] 2. **Separate the Terms:** The sum can be separated into two parts: \[ S = \sum_{n=0}^{m} \log(a^{2n-1}) - \sum_{n=0}^{m} \log(b^{m-1}) \] 3. **Simplify the Second Term:** Since \(\log(b^{m-1})\) does not depend on \(n\), it can be factored out: \[ S = \sum_{n=0}^{m} \log(a^{2n-1}) - (m+1) \log(b^{m-1}) \] 4. **Evaluate the First Summation:** The first summation can be simplified further: \[ S = \sum_{n=0}^{m} (2n-1) \log(a) - (m+1) \log(b^{m-1}) \] This can be rewritten as: \[ S = \log(a) \sum_{n=0}^{m} (2n-1) - (m+1) \log(b^{m-1}) \] 5. **Calculate the Summation of \(2n-1\):** The summation \(\sum_{n=0}^{m} (2n-1)\) can be calculated as follows: \[ \sum_{n=0}^{m} (2n-1) = 2\sum_{n=0}^{m} n - \sum_{n=0}^{m} 1 = 2 \cdot \frac{m(m+1)}{2} - (m+1) = m(m+1) - (m+1) = m^2 \] 6. **Substitute Back:** Now substituting back into the equation: \[ S = \log(a) m^2 - (m+1) \log(b^{m-1}) \] 7. **Final Simplification:** We can express the final result as: \[ S = m^2 \log(a) - (m+1)(m-1) \log(b) \] ### Final Result: Thus, the value of the summation is: \[ S = m^2 \log(a) - (m+1)(m-1) \log(b) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)log((a^(r))/(b^(r-1))) , is

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is (a) -1 (b) 0 (c) 1 (d) ∞

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of (lim)_(n->oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!) is a. 1 b . -1 c. 0 d. none of these

The value of sum_(r=0)^n(a+r+a r)(-a)^r is equal to a. (-1)^n[(n+1)a^(n+1)-a] b. (-1)^n(n+1)a^(n+1) c. (-1)^n((n+2)a^(n+1))/2 d. (-1)^n(n a^n)/2

The value of sum_(r=0)^(n-1)^n C_r//(^n C_r+^n C_(r+1)) equals a. n+1 b. n//2 c. n+2 d. none of these

Evaluate the following limit: (lim)_(x->0)(a^(m x)-1)/(b^(n x)-1),\ n!=0

If 0 lt y lt 1 , then sum_(n=1)^(oo)(1)/(2n-1)*y^(n+1)=……

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .