Home
Class 12
MATHS
The value of sum(r=1)^n 1/(sqrt(a+rx) + ...

The value of `sum_(r=1)^n 1/(sqrt(a+rx) + sqrt(a+(r-1)x))` is :

A

`n/(sqrt(a)+sqrt(a+nx))`

B

`(sqrt(a+nx)-sqrt(a))/x`

C

`(nsqrt(a+nx)-sqrt(a))/x`

D

`n/(sqrt(a+nx)-sqrt(a))`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

The value of sum_(r=1)^(n)log((a^(r))/(b^(r-1))) , is

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The summation of series sum_(r=1->99) 1/(sqrt(r+1)+sqrtr) is:

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to