Home
Class 12
PHYSICS
A small block starts sliding down an inc...

A small block starts sliding down an inclined plane subtending an angle `theta` with the horizontal . The coefficient of friction between the block and plane depends on the distance covered from rest along the plane as `mu = mu_(0)x` where `mu_(0)` is a constant . Find (a) the distance covered by the block down the plane till it stops sliding and (b) its maximum velocity during this journey .

Text Solution

Verified by Experts

The correct Answer is:
`d + ( sin theta + sqrt( sin^(2) theta + d mu_(0) sin 2 theta))/( mu _(0) co stheta )`
Promotional Banner

Similar Questions

Explore conceptually related problems

A block of mass m slides down an inclined plane which makes an angle theta with the horizontal. The coefficient of friction between the block and the plane is mu . The force exerted by the block on the plane is

A block of mass m slides down an inclined plane of inclination theta with uniform speed. The coefficient of friction between the block and the plane is mu . The contact force between the block and the plane is

A block of mass 2kg rests on a rough inclined plane making an angle of 30^@ with the horizontal. The coefficient of static friction between the block and the plane is 0.7. The frictional force on the block is

A block of mass 2kg rests on a rough inclined plane making an angle of 30^@ with the horizontal. The coefficient of static friction between the block and the plane is 0.7. The frictional force on the block is

A block of mass 3 kg rests on a rough inclined plane making an angle of 30^(@) . With the horizontal. The coefficient of static friction between the block and the plane is 0.7. The frictional force on the block is

A block of mass m is placed at rest on an inclination theta to the horizontal. If the coefficient of friction between the block and the plane is mu , then the total force the inclined plane exerts on the block is

A block is lying on an inclined plane which makes an angle of 60^@ with the horizontal. If coefficient of friction between the block and the plane is 0.25 and g = 10 ms^(-2) , the acceleration of block when it is moves along the plane will be

A block rests on a rough inclined plane making an angle of 30^@ with the horizontal. The coefficient of static friction between the block and the plane is 0.8. If the frictional force on the block is 10N, the mass of the block (in kg) is

A block of mass m is placed on a rough plane inclined at an angle theta with the horizontal. The coefficient of friction between the block and inclined plane is mu . If theta lt tan^(-1) (mu) , then net contact force exerted by the plane on the block is :