Home
Class 12
PHYSICS
If vec( A) + vec(B) =vec( C ), and | vec...

If `vec( A) + vec(B) =vec( C )`, and `| vec(A)| =2 | vec( B) |` and `vec( B). vec( C ) = 0`, then

A

`|vec( A) + vec( C ) | =| vec( A) + vec( B) |`

B

`|vec( A) + vec( B) | =B`

C

`vec( A) . vec( B) lt 0`

D

`vec(A) .vec(C ) ` may be zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, let's break it down step by step. ### Step 1: Understand the Given Information We have three vectors: - \( \vec{A} + \vec{B} = \vec{C} \) - \( |\vec{A}| = 2 |\vec{B}| \) - \( \vec{B} \cdot \vec{C} = 0 \) ### Step 2: Analyze the Dot Product Condition The condition \( \vec{B} \cdot \vec{C} = 0 \) implies that vectors \( \vec{B} \) and \( \vec{C} \) are perpendicular to each other. ### Step 3: Express \( \vec{C} \) in Terms of \( \vec{A} \) and \( \vec{B} \) From the equation \( \vec{A} + \vec{B} = \vec{C} \), we can substitute \( \vec{C} \) in the dot product condition: \[ \vec{B} \cdot (\vec{A} + \vec{B}) = 0 \] This expands to: \[ \vec{B} \cdot \vec{A} + \vec{B} \cdot \vec{B} = 0 \] Since \( \vec{B} \cdot \vec{B} = |\vec{B}|^2 \), we have: \[ \vec{B} \cdot \vec{A} + |\vec{B}|^2 = 0 \] Thus, we can express \( \vec{B} \cdot \vec{A} \) as: \[ \vec{B} \cdot \vec{A} = -|\vec{B}|^2 \] ### Step 4: Use the Magnitude Relationship Given \( |\vec{A}| = 2 |\vec{B}| \), let \( |\vec{B}| = b \). Then: \[ |\vec{A}| = 2b \] Now, we can express the dot product \( \vec{B} \cdot \vec{A} \) in terms of magnitudes and the angle \( \theta \) between them: \[ \vec{B} \cdot \vec{A} = |\vec{B}| |\vec{A}| \cos(\theta) = b \cdot 2b \cos(\theta) = 2b^2 \cos(\theta) \] Setting this equal to our previous expression: \[ 2b^2 \cos(\theta) = -b^2 \] Dividing both sides by \( b^2 \) (assuming \( b \neq 0 \)): \[ 2 \cos(\theta) = -1 \implies \cos(\theta) = -\frac{1}{2} \] This means: \[ \theta = \frac{2\pi}{3} \text{ or } 120^\circ \] ### Step 5: Conclusion We have determined the angle between \( \vec{A} \) and \( \vec{B} \) to be \( 120^\circ \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b)| =3 and | vec( c)| =4 , then the angle between vec(b) and vec(c ) is

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.

Given that vec(A)+vec(B)=vec(C ) and that vec(C ) is perpendicular to vec(A) Further if |vec(A)|=|vec(C )| , then what is the angle between vec(A) and vec(B)

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these