Home
Class 12
PHYSICS
An electric current of 16 A exists in a ...

An electric current of 16 A exists in a metal wire of cross section `10^(-6) m^(2)` and length 1 m. Assuming one free electron per atom. The drift speed of the free electrons in the wire will be (Density of metal = `5 xx 10^(3) kg//m^(3)` atomic weight = 60)

A

`5 xx 10^(-3) m//s`

B

`2 xx 10^(-3) m//s`

C

`4 xx10^(-3) m//s`

D

`7.5 xx 10^(-3) m//s`

Text Solution

AI Generated Solution

The correct Answer is:
To find the drift speed of the free electrons in the wire, we can use the formula that relates current (I), electron density (N), charge of an electron (E), cross-sectional area (A), and drift speed (Vd): \[ I = N \cdot E \cdot A \cdot V_d \] ### Step 1: Calculate the Electron Density (N) Given: - Density of the metal, \( \rho = 5 \times 10^3 \, \text{kg/m}^3 \) - Atomic weight (molar mass), \( M = 60 \, \text{g/mol} = 60 \times 10^{-3} \, \text{kg/mol} \) - Avogadro's number, \( N_A = 6.02 \times 10^{23} \, \text{atoms/mol} \) To find the number of atoms per unit volume (N), we can use the formula: \[ N = \frac{\text{Density}}{\text{Atomic Weight}} \times N_A \] Substituting the values: \[ N = \frac{5 \times 10^3 \, \text{kg/m}^3}{60 \times 10^{-3} \, \text{kg/mol}} \times 6.02 \times 10^{23} \, \text{atoms/mol} \] Calculating: \[ N = \frac{5 \times 10^3}{60 \times 10^{-3}} \times 6.02 \times 10^{23} \] \[ N = \frac{5 \times 10^3}{0.06} \times 6.02 \times 10^{23} \] \[ N = 83333.33 \times 6.02 \times 10^{23} \] \[ N \approx 5.02 \times 10^{28} \, \text{electrons/m}^3 \] ### Step 2: Use the Current to Find Drift Speed (Vd) Given: - Current, \( I = 16 \, \text{A} \) - Charge of an electron, \( E = 1.6 \times 10^{-19} \, \text{C} \) - Cross-sectional area, \( A = 10^{-6} \, \text{m}^2 \) Rearranging the formula for drift speed: \[ V_d = \frac{I}{N \cdot E \cdot A} \] Substituting the values: \[ V_d = \frac{16}{5.02 \times 10^{28} \cdot 1.6 \times 10^{-19} \cdot 10^{-6}} \] Calculating: \[ V_d = \frac{16}{5.02 \times 1.6 \times 10^{3}} \] \[ V_d = \frac{16}{8.032 \times 10^{3}} \] \[ V_d \approx 1.99 \times 10^{-3} \, \text{m/s} \] ### Final Answer Thus, the drift speed of the free electrons in the wire is approximately: \[ V_d \approx 2 \times 10^{-3} \, \text{m/s} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

An electric current of 16 A exists in a metal wire of cross section 10^(-6)"M"^(2) and length 1m. Assuming one free electron per atom. The drift speed of the free electron in the wire will be (0.00x)m//s. Find value of x. ("Density of metal"= 5xx10^(3)"kg"//"m"^(3), "atomic weight"=60)

A current of 1.0 A exists in a copper wore of cross-section 1.0mm^(2) . Assuming one free electron per atom calculate the drift speed of the free electrons in the wire. The density of copper is 9000kg m^(-3) .

A current of 1.34A exists in a copper wire of cross-section 1.0mm^(2) . Assuming eac copper atom contributes one free eectron. Calculate the drift speed of the free electrons in the wire. The density of copper is 8990 kg// m^(3) and atom ic mass=63.50.

A uniform copper wire having a cross sectional area of 1 mm^(2) carries a current of 5 A. Calculate the drift speed of free electrons in it. (Free electron number of density of copper =2 times 10^(28)//m^(3) .)

A current 4.0 A exist in a wire of cross-sectional area 2.0 mm^(2) . If each cubic metre of the wire contains 12.0xx10^(28) free electrons, then the drift spped is

A current of 10 A is maintained in a conductor of cross-section 1 cm^(2) . If the free electron density in the conductor is 9 xx 10^(28) m^(-3) , then drift velocity of free electrons is

A current of 10 A is mainatained in a conductor of cross - section 1 cm^(2) . If the free electron density in the conductor is 9 xx 10^(28) m^(-3) , then drift velocity of free electrons is .

Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area 2.0 xx 10^(-7)m^(2) carrying a current of 3.0 A. Assume that each copper atom contributes roughly one conduction electron. The density of copper is 9.0 xx10^(3) kg//m^(3) , and its atomic mass is 63.5 u.

A steady current is set up in a metalic wire of non- uniform cross-section. How is the rate of flow free electrons related

There is a current of 40 ampere in a wire of 10^(-6)m^(2) are of cross-section. If the number of free electron per m^(3) is 10^(29) then the drift velocity will be