Home
Class 12
CHEMISTRY
If equilibrium constant of CH3COOH + H2O...

If equilibrium constant of `CH_3COOH + H_2O Leftrightarrow CH_3COO^(-) + H_3O+ is 1.8 xx 10^(-5)`, equilibrium constant for
`CH_(3)COOH+OH^(-) Leftrightarrow CH_(3)COO^(-)+H_(2)O` is

A

`6.63 xx 10^(-10)`

B

` 6.63 xx 10^(10)`

C

`1.8 xx 10^(9)`

D

`1.8 xx 10^(-9)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant for the reaction: \[ \text{CH}_3\text{COOH} + \text{OH}^- \leftrightarrow \text{CH}_3\text{COO}^- + \text{H}_2\text{O} \] given that the equilibrium constant for the reaction: \[ \text{CH}_3\text{COOH} + \text{H}_2\text{O} \leftrightarrow \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+ \] is \( K_1 = 1.8 \times 10^{-5} \), we can follow these steps: ### Step 1: Write the Equilibrium Constant Expression for Both Reactions For the first reaction, the equilibrium constant \( K_1 \) can be expressed as: \[ K_1 = \frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COOH}]} \] For the second reaction, the equilibrium constant \( K_2 \) can be expressed as: \[ K_2 = \frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}][\text{OH}^-]} \] ### Step 2: Relate the Two Equilibrium Constants We can relate \( K_1 \) and \( K_2 \) by manipulating the equations. We know that: \[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 10^{-14} \] Now, if we divide \( K_1 \) by \( K_2 \): \[ \frac{K_1}{K_2} = \frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COOH}]} \div \frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}][\text{OH}^-]} \] This simplifies to: \[ \frac{K_1}{K_2} = \frac{[\text{H}_3\text{O}^+]}{[\text{OH}^-]} \] ### Step 3: Substitute \( K_w \) From the relationship \( K_w = [\text{H}_3\text{O}^+][\text{OH}^-] \), we can express \( [\text{H}_3\text{O}^+] \) in terms of \( K_w \) and \( [\text{OH}^-] \): \[ [\text{H}_3\text{O}^+] = \frac{K_w}{[\text{OH}^-]} \] Substituting this into our equation gives: \[ \frac{K_1}{K_2} = \frac{K_w}{[\text{OH}^-]^2} \] ### Step 4: Solve for \( K_2 \) Rearranging gives: \[ K_2 = \frac{K_1 \cdot [\text{OH}^-]^2}{K_w} \] Since we are looking for \( K_2 \) and we know \( K_w = 10^{-14} \) and \( K_1 = 1.8 \times 10^{-5} \), we can substitute the values: \[ K_2 = \frac{1.8 \times 10^{-5} \cdot [\text{OH}^-]^2}{10^{-14}} \] ### Step 5: Calculate \( K_2 \) Assuming \( [\text{OH}^-] \) is at standard conditions (which is typically \( 1 \times 10^{-7} \) M for pure water), we can calculate: \[ K_2 = \frac{1.8 \times 10^{-5} \cdot (1 \times 10^{-7})^2}{10^{-14}} \] \[ K_2 = \frac{1.8 \times 10^{-5} \cdot 1 \times 10^{-14}}{10^{-14}} = 1.8 \times 10^{9} \] Thus, the equilibrium constant for the reaction \( \text{CH}_3\text{COOH} + \text{OH}^- \leftrightarrow \text{CH}_3\text{COO}^- + \text{H}_2\text{O} \) is: \[ K_2 = 1.8 \times 10^{9} \] ### Final Answer The equilibrium constant \( K_2 \) is \( 1.8 \times 10^{9} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

In the equilibrium CH_(3)COOH+HF Leftrightarrow CH_(3)COOH_(2)^(+)+F^(-)

If equilibrium constant of HA+H_(2)O hArr A^(-) +H_(3)O^(+) at 25^(@)C is 2.82 xx10^(-5) , then the equilibrium constant for HA + OH^(-) hArr A^(-) +H_(2)O at the same temperature is

In equilibrium CH_(3)COOH+H_(2)OhArrCH_(3)COO^(-)+H_(3)O^(+) The equilibrium constant may change when

Dissociation constants of CH_(3)COOH and NH_(4)OH are 1.8xx10^(5) each at 25^(@)C . The equilibrium constant for the reaction of CH_(3)COOH and NH_(4)OH will be -

The equilibrium constant for CN^(-) + CH_(3)COOH hArr HCN + CH_(3)COO^(-) is: (Given pK_(b) for CN^(-) = 4.69 and pK_(a) for CH_(3)COOH = 4.75 )

The dissociation constant of 0.01 M CH_3COOH "is" 1.8 xx 10^(-5) , then calculate the dissociation constant of its conjugate base (CH_3COO^-)

The dissociation constant of 0.01 M CH_(3)COOH is 1.2xx10^(-5) then calculate the dissociation constant of its conjugate baze (CH_(3)COO^(-))

The coordination number of Cr in Cr_(3)O(CH_(3)COO)_(6)3H_(2)O is ,

Find the Van't Hoff factor of a. CH_(3)COOH in H_(2)O , b. CH_(3)COOH in benzene

Reactant overset(H_(3)O^(+))rarr CH_(3)COOH+HCl