To find the magnitude of the needle's magnetic dipole moment, we can follow these steps:
### Step 1: Calculate the Volume of the Needle
The volume \( V \) of the needle can be calculated using the formula:
\[
V = \text{length} \times \text{width} \times \text{thickness}
\]
Given:
- Length = 5 cm = 0.05 m
- Width = 1 mm = 0.001 m
- Thickness = 0.5 mm = 0.0005 m
Substituting the values:
\[
V = 0.05 \, \text{m} \times 0.001 \, \text{m} \times 0.0005 \, \text{m} = 2.5 \times 10^{-8} \, \text{m}^3
\]
### Step 2: Calculate the Mass of the Needle
Using the density \( \rho \) and volume \( V \):
\[
\text{mass} = \rho \times V
\]
Given:
- Density \( \rho = 8000 \, \text{kg/m}^3 \)
Substituting the values:
\[
\text{mass} = 8000 \, \text{kg/m}^3 \times 2.5 \times 10^{-8} \, \text{m}^3 = 2.0 \times 10^{-4} \, \text{kg}
\]
### Step 3: Calculate the Number of Moles of Iron
Using the mass of iron per mole:
\[
n = \frac{\text{mass}}{\text{mass of iron per mole}}
\]
Given:
- Mass of iron per mole = 0.05 kg/mole
Substituting the values:
\[
n = \frac{2.0 \times 10^{-4} \, \text{kg}}{0.05 \, \text{kg/mole}} = 4.0 \times 10^{-3} \, \text{moles}
\]
### Step 4: Calculate the Total Number of Iron Atoms
Using Avogadro's number \( N_A \):
\[
\text{Total number of atoms} = n \times N_A
\]
Given:
- \( N_A = 6 \times 10^{23} \, \text{atoms/mole} \)
Substituting the values:
\[
\text{Total number of atoms} = 4.0 \times 10^{-3} \, \text{moles} \times 6 \times 10^{23} \, \text{atoms/mole} = 2.4 \times 10^{21} \, \text{atoms}
\]
### Step 5: Calculate the Number of Atoms Contributing to Magnetization
Since only 10% of the atoms contribute to the magnetization:
\[
\text{Contributing atoms} = 0.1 \times \text{Total number of atoms}
\]
Substituting the values:
\[
\text{Contributing atoms} = 0.1 \times 2.4 \times 10^{21} = 2.4 \times 10^{20} \, \text{atoms}
\]
### Step 6: Calculate the Magnetic Dipole Moment of the Needle
Using the magnetic dipole moment of iron:
\[
\mu = \text{Contributing atoms} \times \mu_{\text{Fe}}
\]
Given:
- \( \mu_{\text{Fe}} = 2 \times 10^{-23} \, \text{J/T} \)
Substituting the values:
\[
\mu = 2.4 \times 10^{20} \times 2 \times 10^{-23} = 4.8 \times 10^{-3} \, \text{J/T}
\]
### Final Answer
The magnitude of the needle's magnetic dipole moment \( \mu \) is:
\[
\mu = 4.8 \times 10^{-3} \, \text{J/T}
\]
---