To find the maximum magnitude of the transverse component of tension in the string, we can follow these steps:
### Step 1: Determine the Tension in the String
The tension \( T \) in the string is provided by the weight of the mass attached to the other end of the string. The weight can be calculated using the formula:
\[
T = m \cdot g
\]
where:
- \( m = 4.68 \, \text{kg} \) (mass)
- \( g = 9.8 \, \text{m/s}^2 \) (acceleration due to gravity)
Calculating this gives:
\[
T = 4.68 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 45.864 \, \text{N}
\]
### Step 2: Convert Amplitude to SI Units
The amplitude \( A \) is given as \( 1.12 \, \text{cm} \). We need to convert this into meters:
\[
A = 1.12 \, \text{cm} = 1.12 \times 10^{-2} \, \text{m}
\]
### Step 3: Calculate the Linear Density in SI Units
The linear density \( \mu \) is given as \( 117 \, \text{g/m} \). We need to convert this into kilograms per meter:
\[
\mu = 117 \, \text{g/m} = 117 \times 10^{-3} \, \text{kg/m}
\]
### Step 4: Calculate the Angular Frequency
The frequency \( f \) is given as \( 120 \, \text{Hz} \). The angular frequency \( \omega \) can be calculated using the formula:
\[
\omega = 2 \pi f
\]
Calculating this gives:
\[
\omega = 2 \pi \times 120 \, \text{Hz} = 240 \pi \, \text{rad/s}
\]
### Step 5: Calculate the Maximum Transverse Component of Tension
The maximum magnitude of the transverse component of tension can be calculated using the formula:
\[
T_{\text{max}} = T \cdot A \cdot \omega
\]
Substituting the values we have:
\[
T_{\text{max}} = 45.864 \, \text{N} \cdot 1.12 \times 10^{-2} \, \text{m} \cdot 240 \pi \, \text{rad/s}
\]
Calculating this step-by-step:
1. Calculate \( 240 \pi \):
\[
240 \pi \approx 753.98 \, \text{rad/s}
\]
2. Now calculate \( T_{\text{max}} \):
\[
T_{\text{max}} = 45.864 \cdot 1.12 \times 10^{-2} \cdot 753.98
\]
\[
T_{\text{max}} \approx 45.864 \cdot 0.0112 \cdot 753.98 \approx 19.56 \, \text{N}
\]
### Final Answer
The maximum magnitude of the transverse component of tension in the string is approximately:
\[
\boxed{19.56 \, \text{N}}
\]