Home
Class 12
PHYSICS
A lake is covered with ice 2 cm thick.th...

A lake is covered with ice 2 cm thick.the temperature of ambient air is `-15^(@)C` find the rate of thickening of ice. For ice `k=4xx10^(-4)k-cal-m^(-1)s^(_1)(.^(@)C)^(-1)`. Density `=0.9xx10^(3)kg//m^(3)` and latent heat `L=80` kilo cal/kg

Text Solution

Verified by Experts

Heat energy flowing per sec is given by
`H=(dQ)/(dt)=KA(Delta theta)/x`……(i)
If dm is the mass of ice formed in time dt, then
`(dm)/(dt)=(Adxx rho)/(dt)=A.rho. (dx)/(dt)`
Since `H=((dm)/(dt))L`
`H=A rho(dx)/(dt)L`………ii
From eq. (i) and (ii)
`A rho L (dx)/(dt)=-kA(Delta theta)/x`
Rate of thickening ofice `=(dx)/(dt)`
`:.(dx)/(dt)=-(KA)/(rhoAL) (Delta theta)/x=(-K)/(rhoL) (Delta theta)/(rhoL x)=(4xx10^(-4))/(0.9xx10^(3)xx80)xX((0-(-15))/(2xx10^(2)))=4.166xx10^(-6)m//s`
`=1.45` cm /hour
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the rate of increment of the thickness of ice layer on a lake when thickness of ice is 10 cm and the air temperature is -5^(@) C . If thermal conductivity of ice is 0.008 cal "cm"^(-1) "s"^(-1)°"C"^(-1) , density of ice is 0.91 xx 10^(3) "kg m"^(-3) and latent heat is 79.8 cal "gm"^(-1) . How long will it take the layer to become 10.1 cm ?

The thickness of ice on a Jake is 6 cm and the temperature of air is - 10^(@) C . At what rate is the thickness of ice increasing ? Thermal conductivity of ice = 2 "Wm"^(-1) "K"^(-1) . Density of ice = 920 "kg m"^(3) , specific latent heat of ice = 336 "KJ kg"^(-1)

What fraction of an iceberg ice beneath the surface of the sea? Density of sea water (rho)=1.028xx10^(3)kg//m^(3) , density of ice d. =0.917xx10^(3)kg//m^(3)

Time in which a layer of ice of thickness 10 cm will increase by 5 cm on te surface of a pond when temperature of the surrounding is -10^(@)C coefficient of thermal conductivity of ice K=0.005((Cal)/(cm-sec-.^(@)C)) and density rho=0.9gram//cm^(3) (L=80cal/g)

A pond has a layer of ice of thickness 0.25 m on its surface the temperature of the atmosphere is 10^(@) C . Find out the time required to increase the thickness of the layer of ice 0.5 "mm" . K of ice = 2 "Wm"^(-2) "K"^(-1) . Density of ice = 900 "kg m"^(-3) latent heat of fusion of ice = 336 "KJ kg"^(-1) .

Aluminium container of mass of 10 g contains 200 g of ice at -20^(@)C . Heat is added to the system at the rate of 100 calories per second. What is the temperature of the system after four minutes? Draw a rough sketch showing the variation of the temperature of the system as a function of time . Given: Specific heat of ice = 0.5"cal"g^(-1)(.^(@)C)^(-1) Specific heat of aluminium = 0.2"cal"g^(-1)(.^(@)C)^(-1) Latent heat of fusion of ice = 80"cal"g^(-1)

A lake surface is exposed to an atmosphere where the temperature is lt 0^(@)C . If the thickness of the ice layer formed on the surface grows form 2cm to 4cm in 1 hour. The atmospheric temperature, T_(a) will be- (Thermal conductivity of ice K = 4 xx 10^(-3) cal//cm//s//.^(@)C , density of ice = 0.9 gm//ice. Latent heat of fustion of ice = 80 cal//m . Neglect the change of density during the state change. Assume that the water below the ice has 0^(@) temperature every where)

If 10 g of ice is added to 40 g of water at 15^(@)C , then the temperature of the mixture is (specific heat of water = 4.2 xx 10^(3) j kg^(-1) K^(-1) , Latent heat of fusion of ice = 3.36 xx 10^(5) j kg^(-1) )

10 gram of water at 45^(@)C is added to 5 gram of ice at -30^(@)C . Find the final temperature of the mixture. Specific heat of ice is 0.55 cal g^(-1)""^(@)C^(-1) and that of water is 1.0 cal g^(-1)""^(@)C^(-1) latent heat of fusion of ice is 80 cal g^(-1) ? (ii) To rise the temperature of 100 gram of water from 24^(@) to 90^(@)C by steam at 100^(@)C . Calculate the amount of steam required. Specific heat of water is 1.0 cal g^(-1)""^(@)C^(-1) . Latent heat of steam is 540 Cal kg^(-1) .

Calculate the entropy change in the melting of 1 kg of ice at 0^(@)C in SI units. Heat of funsion of ice = 80 cal g^(-1) .