Home
Class 12
PHYSICS
What should be the length of steel and c...

What should be the length of steel and copper rods at `0^(@)C` that the length of steel rod is 5 cm longer than copper at all termperature? Given `alpha_(Cu) = 1.7 xx 10^(5) .^(@)C^(-1)` and `alpha_(steel) = 1.1 xx 10^(5) .^(@)C^(-1)`.

A

9.17 cm , 14.17 cm

B

9.02 cm, 14.20 cm

C

9.08cm, 14.08 cm

D

9.50 cm,14.50 cm

Text Solution

AI Generated Solution

To solve the problem, we need to find the lengths of the steel and copper rods at 0°C, given that the steel rod is 5 cm longer than the copper rod at all temperatures. We will use the coefficients of linear expansion for copper and steel to derive the lengths. ### Step-by-Step Solution: 1. **Define Variables:** Let \( L \) be the length of the copper rod at 0°C. Therefore, the length of the steel rod at 0°C will be: \[ L_{steel} = L + 5 \text{ cm} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

What must be the lengths of steel and copper rods at 0^(@)C for the difference in their lengths to be 10 cm at any common temperature? (alpha_(steel)=1.2xx10^(-5).^(@)K^(-1)and alpha_("copper")=1.8xx10^(-5).^(@)K^(-1))

Two fines steel wires , fastened between the projectors of a heavy brass bar, are just taut when the whole system is at 0^(@)C . What is the tensile stress in the steel wires the temperature of the system is raised by 200^(@)C ? ( alpha_("glass") = 2 xx 10^(-5) ^(@)C ^(-1), alpha_("steel") = 1.2 xx 10^(-5)"^(@)C^(-1) , Y_("steel") = 200GNm^(-2) )

A fine steel wire of length 4 m is fixed rigidly in a heavy brass frame as ashown in figure . It is just taut at 20^(@)C . The tensile stress developed in steel wire it whole system is heated to 120^(@)C is :- ( Given alpha _("brass") = 1.8 xx 10^(-5) .^(@)C^(-1), alpha_("steel") = 1.2 xx 10^(-5) .^(@)C , Y_("steel") = 2 xx 10^(11) Nm^(-2), Y_("brass")= 1.7xx10^(7) Nm^(-2) )

The design of some physical instrument requires that there be a constant difference in length of 10 cm between an iron rod and a copper cylinder laid side by side at all temperature find their lengths (alpha_(Fe)=11 xx 10^(6).^(@)C^(-1),alpha_(Cu)=17 xx 10^(-6) .^(@)C^(-1))

The coefficient of linear expansion 'alpha ' of a rod of length 2 m varies with the distance x from the end of the rod as alpha = alpha_(0) + alpha_(1) "x" where alpha_(0) = 1.76 xx 10^(-5) "^(@)C^(-1)"and" alpha_(1) = 1.2 xx 10^(-6)m^(-1) "^(@)C^(-1) . The increase in the length of the rod. When heated through 100^(@)C is :-

A glass rod when measured with a zinc scale, both being at 30^(@)C , appears to be of length 100 cm . If the scale shows correct reading at 0^(@)C , then the true length of glass rod at 30^(@)C and 0^(@)C are :- ( alpha_("glass") = 8 xx 10^(-6)"^(@)C ^(-1), alpha_("zinc") = 26 xx 10^(-6) K^(-1) )

Figure shows a copper rod joined to a steel rod. The rods have equal length and and the equal cross sectional area. The free end of the copper rod is kept at 0^(@)C and that of the steel rod is kept at 100^(@)C . Find the temperature at the junction of the rods. conductivity of copper =390WM^(-1).^(@)C^(-1) and that of steel =46Wm^(-1).^(@)C^(-1) .

A steel tape measures that length of a copper rod as 90.0 cm when both are at 10^(@)C , the calibration temperature, for the tape. What would the tape read for the length of the rod when both are at 30^(@)C . Given alpha_("steel")=1.2xx10^(-5)" per".^(@)Cand alpha_(Cu)=1.7xx10^(-5)per .^(@)C

A steel tape 1m long is correctly calibrated for a temperature of 27^(@)C . The length of a steel rod measured by this tape is found to be 63.0cm on a hot day when the temperature is 45.0^(@)C . What is the acutual length of the steel rod on that day? what is the length of the same steel rod on a day when the temperature is 27.0^(@)C ? coefficient of linear expansion of steel = 1.20xx10^(-5) .^(@)C^(-1) .

At 50^(@)C , a brass rod has a length 50 cm and a diameter 2 mm . It is joined to a steel rod of the same length and diameter at the same temperature . The change in the length of the composite rod when it is heated to 250^(@)C is (Coefficient of linear expansion of brass = 2.0 xx 10^(-5)"^(@) C^(-1) , coefficient of linear expansion of steel = 1.2 xx 10^(-5) "^(@) C^(-1) )