Home
Class 12
CHEMISTRY
The half-life period of radon is 3.8 day...

The half-life period of radon is 3.8 days. After how many will only one-twentieth of radon sample be left over?

Text Solution

Verified by Experts

`lambda=(0.693)/(t_(1//2))=(0.693)/(3.8)=0.182day^(-1)`
Let the initial amount of radon be `N_(0)` and amount left after `t` days be `N` which is equal to `(N_(0))/(20)`
`t=(2.303)/(lambda)log_(10).(N_(0))/(N)`
`=(2.303)/(0.182)log_(10).(N_(0))/(N_(0)//20)=(2.303)/(0.182)log_(10)20`
`=16.54` days
Promotional Banner

Similar Questions

Explore conceptually related problems

The half-life of radon is 3.8 days. After how many days 19/20 of the sample will decay ?

The half life of radioactive Radon is 3.8 days . The time at the end of which (1)/(20) th of the radon sample will remain undecayed is (given log e = 0.4343 )

The half life of radioactive Radon is 3.8 days . The time at the end of which (1)/(20) th of the radon sample will remain undecayed is (given log e = 0.4343 )

The half life period of a radioactive substance is 140 days. After how much time, 15 g will decay from a 16 g sample of the substance?

The half-life period of a radioactive element is 100 days. After 400 days, one gram of the element will reduced to:

The half-life period of a first order reaction is 60 minutes. What percentage of the reactant will be left behind after 120 minutes ?

The half-life period of a radioactive element is 140 days. After 560 days, 1g of the element will reduce to a. 0.5 g b. 0.25 g c. 1//8 g d. 1//16 g

The half-life period of RaB (._(82)Pb^(214)) is 26.8 min . The mass of one curie of RaB is