Home
Class 12
MATHS
Solve the following system of equation b...

Solve the following system of equation by matrix method `x + y - 2z = 1; x - y + z = 0; 2x + 3y - 4z = 2,`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( x + y - 2z = 1 \) (Equation 1) 2. \( x - y + z = 0 \) (Equation 2) 3. \( 2x + 3y - 4z = 2 \) (Equation 3) ### Step 1: Form the Coefficient Matrix and the Constant Matrix We can represent the system of equations in matrix form as \( AX = B \), where: - \( A \) is the coefficient matrix: \[ A = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ 2 & 3 & -4 \end{bmatrix} \] - \( X \) is the column matrix of variables: \[ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] - \( B \) is the constant matrix: \[ B = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \] ### Step 2: Calculate the Determinant of Matrix A (denoted as \( \Delta \)) To find \( \Delta \), we compute the determinant of matrix \( A \): \[ \Delta = \begin{vmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ 2 & 3 & -4 \end{vmatrix} \] Calculating the determinant: \[ \Delta = 1 \cdot \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ 2 & -4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} = (-1)(-4) - (1)(3) = 4 - 3 = 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & -4 \end{vmatrix} = (1)(-4) - (1)(2) = -4 - 2 = -6 \) 3. \( \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = (1)(3) - (-1)(2) = 3 + 2 = 5 \) Substituting these values back: \[ \Delta = 1 \cdot 1 - 1 \cdot (-6) - 2 \cdot 5 = 1 + 6 - 10 = -3 \] ### Step 3: Calculate \( \Delta_1 \), \( \Delta_2 \), and \( \Delta_3 \) #### Finding \( \Delta_1 \) Replace the first column of \( A \) with the constants from \( B \): \[ \Delta_1 = \begin{vmatrix} 1 & 1 & -2 \\ 0 & -1 & 1 \\ 2 & 3 & -4 \end{vmatrix} \] Calculating \( \Delta_1 \): \[ \Delta_1 = 1 \cdot \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & 1 \\ 2 & -4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & -1 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} = 1 \) (as calculated earlier) 2. \( \begin{vmatrix} 0 & 1 \\ 2 & -4 \end{vmatrix} = (0)(-4) - (1)(2) = -2 \) 3. \( \begin{vmatrix} 0 & -1 \\ 2 & 3 \end{vmatrix} = (0)(3) - (-1)(2) = 2 \) Substituting these values back: \[ \Delta_1 = 1 \cdot 1 - 1 \cdot (-2) - 2 \cdot 2 = 1 + 2 - 4 = -1 \] #### Finding \( \Delta_2 \) Replace the second column of \( A \) with the constants from \( B \): \[ \Delta_2 = \begin{vmatrix} 1 & 1 & -2 \\ 1 & 0 & 1 \\ 2 & 2 & -4 \end{vmatrix} \] Calculating \( \Delta_2 \): \[ \Delta_2 = 1 \cdot \begin{vmatrix} 0 & 1 \\ 2 & -4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ 2 & -4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 0 \\ 2 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 0 & 1 \\ 2 & -4 \end{vmatrix} = -2 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & -4 \end{vmatrix} = -6 \) 3. \( \begin{vmatrix} 1 & 0 \\ 2 & 2 \end{vmatrix} = 2 \) Substituting these values back: \[ \Delta_2 = 1 \cdot (-2) - 1 \cdot (-6) - 2 \cdot 2 = -2 + 6 - 4 = 0 \] #### Finding \( \Delta_3 \) Replace the third column of \( A \) with the constants from \( B \): \[ \Delta_3 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 3 & 2 \end{vmatrix} \] Calculating \( \Delta_3 \): \[ \Delta_3 = 1 \cdot \begin{vmatrix} -1 & 0 \\ 3 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 0 \\ 3 & 2 \end{vmatrix} = -2 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} = 0 \) 3. \( \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = 5 \) Substituting these values back: \[ \Delta_3 = 1 \cdot (-2) - 1 \cdot 0 + 1 \cdot 5 = -2 + 0 + 5 = 3 \] ### Step 4: Calculate the Values of \( x \), \( y \), and \( z \) Using Cramer's rule: \[ x = \frac{\Delta_1}{\Delta} = \frac{-1}{-3} = \frac{1}{3} \] \[ y = \frac{\Delta_2}{\Delta} = \frac{0}{-3} = 0 \] \[ z = \frac{\Delta_3}{\Delta} = \frac{3}{-3} = -1 \] ### Final Solution The solution to the system of equations is: \[ x = \frac{1}{3}, \quad y = 0, \quad z = -1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following system of equations by matrix method. 3x-2y + 3z= 8 2x + y-z = 1 4x-3y + 2z = 4

Solve the following system of equations by matrix method: x-y+z=2,\ \ 2x-y=0, \ \ 2y-z=1

Solve the following system of equations by matrix method: x+y-z=3 , 2x+3y+z=10 ,3x-y-7z=1

Solve the following system of equations by matrix method : x+y-2z=3 , 2x+3y+z=10 and 3x-y-7z=1

Solve the following system of equations by matrix method: 2x+6y=2,\ \ 3x-z=-8,\ \ x-y+z=-3

Solve the following equations by matrix method. 2x + y + z = 1, x - 2y - 3z=1 and 3x + 2y +4z=5

Solve the following system of equations by matrix method: x+y+z=3,\ \ 2x-y+z=-1,\ \ 2x+y-3z=-9

Solve the following system of linear equations using matrix method : 3x + y + z = 1, 2x + 2z =0, 5x + y + 2z = 0 .

Solve the following system of equations 3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0

Solve the system of equation by matrix method 2x+y+z=4 3x-2y+z=2 x-2y+z=0