Home
Class 12
MATHS
A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}]...

`A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)]` then , the value of c and d are

A

`-6-11`

B

` 6,11`

C

`-6,11`

D

`6,-11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( c \) and \( d \) in the expression for the inverse of matrix \( A \). We start by using the characteristic polynomial of matrix \( A \). ### Step-by-Step Solution: 1. **Write down the matrix \( A \)**: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix} \] 2. **Set up the characteristic polynomial**: The characteristic polynomial is given by \( \text{det}(A - \lambda I) = 0 \), where \( I \) is the identity matrix. \[ A - \lambda I = \begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & -2 & 4 - \lambda \end{pmatrix} \] 3. **Calculate the determinant**: We can calculate the determinant using the first row: \[ \text{det}(A - \lambda I) = (1 - \lambda) \cdot \text{det}\begin{pmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{pmatrix} \] Now, calculate the determinant of the 2x2 matrix: \[ = (1 - \lambda)((1 - \lambda)(4 - \lambda) - (-2)(1)) = (1 - \lambda)((1 - \lambda)(4 - \lambda) + 2) \] 4. **Expand the determinant**: Expanding the expression: \[ = (1 - \lambda)(4 - 5\lambda + \lambda^2 + 2) = (1 - \lambda)(\lambda^2 - 5\lambda + 6) \] 5. **Factor the polynomial**: The quadratic \( \lambda^2 - 5\lambda + 6 \) can be factored as: \[ = (1 - \lambda)(\lambda - 2)(\lambda - 3) \] Thus, the characteristic polynomial is: \[ (1 - \lambda)(\lambda - 2)(\lambda - 3) = 0 \] 6. **Formulate the Cayley-Hamilton theorem**: According to the Cayley-Hamilton theorem, the matrix \( A \) satisfies its own characteristic equation: \[ A^3 - 6A^2 + 11A - 6I = 0 \] 7. **Express \( A^{-1} \)**: Rearranging gives: \[ A^3 = 6A^2 - 11A + 6I \] Multiplying by \( A^{-1} \): \[ A^2 = 6A - 11I + 6A^{-1} \] Thus: \[ A^{-1} = \frac{1}{6}(A^2 - 6A + 11I) \] 8. **Identify \( c \) and \( d \)**: Comparing with the given form \( A^{-1} = \frac{1}{6}(A^2 + cA + dI) \): We see that: \[ c = -6 \quad \text{and} \quad d = 11 \] ### Final Answer: The values of \( c \) and \( d \) are: \[ c = -6, \quad d = 11 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (-6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A=[(1,0,0),(0,-1,0),(0,0,2)] and B=[(2,0,0),(0, 3,0),(0,0,-1)] , find A+B , 3A+4B .

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

If [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}] =A, then find the value of A.