Home
Class 12
MATHS
If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 t...

If `A=[[0,1] , [-1,0]]=(alphaI+betaA)^2` then `alpha` and `beta` =

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( A = (\alpha I + \beta A)^2 \) where \( A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), we will follow these steps: ### Step 1: Write down the matrices We have: - \( A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \) - \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) ### Step 2: Compute \( \alpha I \) Calculating \( \alpha I \): \[ \alpha I = \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} \] ### Step 3: Compute \( \beta A \) Calculating \( \beta A \): \[ \beta A = \beta \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \beta \\ -\beta & 0 \end{bmatrix} \] ### Step 4: Add \( \alpha I \) and \( \beta A \) Now, we add \( \alpha I \) and \( \beta A \): \[ \alpha I + \beta A = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} + \begin{bmatrix} 0 & \beta \\ -\beta & 0 \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \] ### Step 5: Square the result Next, we need to square the matrix: \[ (\alpha I + \beta A)^2 = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \] Using matrix multiplication: \[ = \begin{bmatrix} \alpha^2 + \beta(-\beta) & \alpha\beta + \beta\alpha \\ -\beta\alpha + \alpha(-\beta) & -\beta\beta + \alpha^2 \end{bmatrix} \] \[ = \begin{bmatrix} \alpha^2 - \beta^2 & 2\alpha\beta \\ -2\alpha\beta & \alpha^2 - \beta^2 \end{bmatrix} \] ### Step 6: Set the squared matrix equal to \( A \) Now we set the squared matrix equal to \( A \): \[ \begin{bmatrix} \alpha^2 - \beta^2 & 2\alpha\beta \\ -2\alpha\beta & \alpha^2 - \beta^2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \] ### Step 7: Create equations from the matrix equality From this equality, we can derive the following equations: 1. \( \alpha^2 - \beta^2 = 0 \) 2. \( 2\alpha\beta = 1 \) ### Step 8: Solve the equations From the first equation: \[ \alpha^2 = \beta^2 \implies \alpha = \pm \beta \] Substituting \( \alpha = \beta \) into the second equation: \[ 2\alpha^2 = 1 \implies \alpha^2 = \frac{1}{2} \implies \alpha = \pm \frac{1}{\sqrt{2}} \] Thus, \( \beta = \pm \frac{1}{\sqrt{2}} \). ### Step 9: Conclusion The values of \( \alpha \) and \( \beta \) are: \[ \alpha = \pm \frac{1}{\sqrt{2}}, \quad \beta = \pm \frac{1}{\sqrt{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta ,1 are roots of x^3 -2x^2 -5x +6=0 ( alpha gt 1) then 3 alpha + beta=

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is a. x^(2)+alpha x- beta=0 b. x^(2)-[(alpha +beta)+alpha beta]x-alpha beta( alpha+beta)=0 c. x^(2)+[(alpha + beta)+alpha beta]x+alpha beta(alpha + beta)=0 d. x^(2)+[(alpha +beta)+alpha beta)]x -alpha beta(alpha +beta)=0

the lines x + y + 1 = 0; 4x + 3y + 4 = 0 and x + alphay + beta= 0, where alpha^2 + beta^2 = 2, are concurrent

M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=alphaI+betaM^(-1) Where alpha=alpha(theta) and beta=beta(theta) ar real numbers and I is an identity matric of 2xx2 if alpha^(**)= min of set {alpha(theta):thetain[0.2pi)} and beta^(**)= min of set {beta(theta):thetain[0.2pi)} Then value of alpha^(**)+beta^(**) is

If cos( alpha+beta) + sin(alpha-beta) = 0 and 2010tan beta - 1 = 0 then tan alpha is equal to

if alpha and beta are imaginary cube root of unity then prove (alpha)^4 + (beta)^4 + (alpha)^-1 . (beta)^-1 = 0

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is