Home
Class 12
MATHS
If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then ...

If `A=[(3,-3,4),(2,-3,4),(0,-1,1)]`, then `A^(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then show that A^(3)=A^(-1) .

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I .

(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3):}], then show that A^(2)=I

If A=[3-3 4 2-3 4 0-1 1] , show that A^(-1)=A^3 .

Given A=[(5, 0, 4),( 2, 3, 2),( 1, 2, 1)] , B^(-1)=[(1, 3, 3),( 1, 4, 3),( 1, 3, 4)] . Compute (A B)^(-1) .

If A=[[1,2,3]], B=[(-5,4,0),(0,2,-1),(1,-3,2)] then (A) AB=[(-2),(-1),(4)] (B) AB=[-2,-1,4] (C) AB=[4,-1,2] (D) AB=[(-5,4,0),(0,4,-2),(3,-9,6)]

If A=|{:(4,-1,-4),(3,0,-4),(3,-1,-3):}| , then show that A=A^(-1)

If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)] are two matrices, then the value of the determinant (A+A^(2)B^(2)+A^(3)+A^(4)B^(4)+"………"20" terms")