Home
Class 12
MATHS
Find x, so that [1xx1][(1,3,2),(0,5,1),...

Find x, so that `[1xx1][(1,3,2),(0,5,1),(0,3,2)][(,1),(,1),(,x)]=0.`

Text Solution

Verified by Experts

The correct Answer is:
`( (-9+-sqrt(53)))/(2) `
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x such that [(1,x,1)][(1, 3, 2),( 2, 5, 1), (15, 3, 2)][(1),( 2),(x)]=0

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

The value of x so that [[1,x,1]][[1,3,2] , [0,5,1] , [0,3,2]][[1], [1], [x]]=0 is

find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

If A is a square matrix of any order then |A-x|=0 is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-x)]=[(1-x,2),(1,5-x)] Characteristic equation of matrix A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x)(0-2)=0 or x^2-6x+3=0 Matrix A will satisfy this equation ie. A^2-6A+3I=0 . A^-1 can be determined by multiplying both sides of this equation. Let A=[(1,0,0),(0,1,1),(1,-2,4)] On the basis for above information answer the following questions:Sum of elements of A^-1 is (A) 2 (B) -2 (C) 6 (D) none of these

Find x, y if [(-2,0),(3,1)][(-1),(2x)]+[(-2),(1)]=2[(y),(3)]

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

Find the values of x and y , if 2[(1, 3),( 0,x)]+[(y,0),( 1, 2)]=[(5, 6),( 1 ,8)] .

the order of the single matrix obtained from [(1,-1),(0,2),(2,3)] {[(-1,0,2),(2,0,1)]-[(0,1,23),(1,0,21)]} is (A) 2xx3 (B) 2xx2 (C) 3xx2 (D) 3xx3