Home
Class 12
MATHS
Given that matrix B = [{:( a,b),(c,d) :...

Given that matrix ` B = [{:( a,b),(c,d) :}]` find `lambda `so that `B^(2) - ( a+d) B =lambda l.` where I is a unit matrix of order 2.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that \[ B^2 - (a + d)B = \lambda I \] where \( B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) and \( I \) is the identity matrix of order 2, which is \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \] ### Step 1: Calculate \( B^2 \) To find \( B^2 \), we multiply matrix \( B \) by itself: \[ B^2 = B \cdot B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \] Calculating this gives: \[ B^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}. \] ### Step 2: Calculate \( (a + d)B \) Next, we calculate \( (a + d)B \): \[ (a + d)B = (a + d) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} (a + d)a & (a + d)b \\ (a + d)c & (a + d)d \end{pmatrix}. \] This simplifies to: \[ (a + d)B = \begin{pmatrix} a^2 + da & ab + db \\ ac + dc & (a + d)d \end{pmatrix}. \] ### Step 3: Subtract \( (a + d)B \) from \( B^2 \) Now we need to subtract \( (a + d)B \) from \( B^2 \): \[ B^2 - (a + d)B = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix} - \begin{pmatrix} a^2 + da & ab + db \\ ac + dc & (a + d)d \end{pmatrix}. \] Calculating this gives: \[ B^2 - (a + d)B = \begin{pmatrix} (bc - da) & (bd - db) \\ (cd - dc) & (bc + d^2 - (a + d)d) \end{pmatrix}. \] This simplifies to: \[ B^2 - (a + d)B = \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix}. \] ### Step 4: Set the result equal to \( \lambda I \) We set the result equal to \( \lambda I \): \[ \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}. \] ### Step 5: Solve for \( \lambda \) From the above equation, we can see that: \[ bc - ad = \lambda. \] Thus, we find: \[ \lambda = bc - ad. \] ### Final Answer The value of \( \lambda \) is: \[ \lambda = bc - ad. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

If the matrix A=[(0,2b,c) (a,b,-c) (a,-b,c)] , A A^T=I then which of the following is TRUE? (where I is the unit matrix of order 3x3) b=+-1/(sqrt(6)) (b) c=+-1/(sqrt(3)) a=+-1/(sqrt(2)) (d) a=+-2

If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(0,1)]:} , then

If B, C are square matrices of same order such that C^(2)=BC-CB and B^(2)=-I , where I is an identity matrix, then the inverse of matrix (C-B) is

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.

Find the inverse of the matrix A=[(a, b),( c,(1+b c)/a)] and show that a A^(-1)=(a^2+b c+1)I-a A .

If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is an identity matrix of same order as of A )

For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal to (where, I is the identity matrix of the same order of matrix A)

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to