Home
Class 12
MATHS
Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -...

Let ` A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A ` is equal to

A

` [{:( (sqrt(3))/(2) , ( 1)/(2) ),(1,0):}]`

B

` [{:( 1,0),( (sqrt(3))/(2) ,1) :}]`

C

` [{:( 1,(sqrt3)/(2) ),(0,3):}]`

D

` [{:(1,3),( 0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript and derive the required expression \( A^T C^3 A \). ### Step 1: Define Matrices A and B Given: \[ A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^T \) The transpose of matrix \( A \) is obtained by swapping rows and columns: \[ A^T = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Step 3: Calculate \( C = ABA^T \) Now we need to calculate \( C \): 1. First, compute \( AB \): \[ AB = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] Performing the multiplication: \[ AB = \begin{pmatrix} \frac{\sqrt{3}}{2} \cdot 1 + \frac{1}{2} \cdot 0 & \frac{\sqrt{3}}{2} \cdot 1 + \frac{1}{2} \cdot 1 \\ -\frac{1}{2} \cdot 1 + \frac{\sqrt{3}}{2} \cdot 0 & -\frac{1}{2} \cdot 1 + \frac{\sqrt{3}}{2} \cdot 1 \end{pmatrix} \] \[ = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix} \] \[ = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3} + 1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3} - 1}{2} \end{pmatrix} \] 2. Now compute \( C = AB A^T \): \[ C = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3} + 1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3} - 1}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] Performing the multiplication: \[ C = \begin{pmatrix} \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3} + 1}{2} \cdot \frac{1}{2} & \frac{\sqrt{3}}{2} \cdot -\frac{1}{2} + \frac{\sqrt{3} + 1}{2} \cdot \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3} - 1}{2} \cdot \frac{1}{2} & -\frac{1}{2} \cdot -\frac{1}{2} + \frac{\sqrt{3} - 1}{2} \cdot \frac{\sqrt{3}}{2} \end{pmatrix} \] Simplifying this will give us the matrix \( C \). ### Step 4: Calculate \( C^3 \) To find \( C^3 \), we can compute \( C^2 \) first and then multiply \( C^2 \) by \( C \). ### Step 5: Calculate \( A^T C^3 A \) Finally, we will compute \( A^T C^3 A \) using the results from the previous steps. ### Final Result After performing all calculations, we find that: \[ A^T C^3 A = B^3 \] And since \( B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \), we can compute \( B^3 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If {:P=[(sqrt3/2,1/2),(-1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T and X=P^TQ^(2005)P , then X equal to:

Let A={:[(sqrt(3),-1),(2+sqrt(3),1-sqrt(3))]:},B={:[(-sqrt(3),2),(2-sqrt(3),1+sqrt(3))]:} Find A+B.

If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to

If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to

If A is square matrix of order 2xx2 such that A^(2)=I,B=[{:(1,sqrt(2)),(0,1):}] and C=ABA then

Given A=[(sqrt(3) ,2, 1), (3,-1, 0)] and B=[(2,-2,sqrt(5)),(3,1, 1/2)] , find A" "+B .

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))