Home
Class 12
MATHS
If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)...

If `A=[{:(1,1),(0,1):}]` and `B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}]`, then `("BB"^(T)A)^(5)` is equal to

A

` [{:( 2+sqrt(3),1) ,( -1, 2-sqrt(3)):}]`

B

` (1)/(2) [{:( 1,5),( 0,1):}]`

C

` [{:( 1,5),( 0,1):}]`

D

` [{:( 5,1),( 0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \((BB^T A)^5\) where \(A\) and \(B\) are given matrices. ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] \[ B = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Step 2: Calculate \(B^T\) The transpose of \(B\) is: \[ B^T = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Step 3: Calculate \(BB^T\) Now we multiply \(B\) by \(B^T\): \[ BB^T = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] Calculating the elements: - First row, first column: \[ \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1 \] - First row, second column: \[ \frac{\sqrt{3}}{2} \cdot -\frac{1}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = 0 \] - Second row, first column: \[ -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = -\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = 0 \] - Second row, second column: \[ -\frac{1}{2} \cdot -\frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} + \frac{3}{4} = 1 \] Thus: \[ BB^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] ### Step 4: Calculate \(BB^T A\) Now we multiply \(BB^T\) by \(A\): \[ BB^T A = I A = A \] ### Step 5: Calculate \((BB^T A)^5\) Since \(BB^T A = A\), we have: \[ (BB^T A)^5 = A^5 \] ### Step 6: Calculate \(A^5\) To find \(A^5\), we first need to find a pattern in the powers of \(A\). Calculating \(A^2\): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \] Calculating \(A^3\): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \] Calculating \(A^4\): \[ A^4 = A^3 \cdot A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \] Calculating \(A^5\): \[ A^5 = A^4 \cdot A = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} \] ### Final Result Thus, we find: \[ (BB^T A)^5 = A^5 = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

If {:P=[(sqrt3/2,1/2),(-1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

(sqrt(3)-1/(sqrt(3)))^2 is equal to

Given A=[(sqrt(3) ,2, 1), (3,-1, 0)] and B=[(2,-2,sqrt(5)),(3,1, 1/2)] , find A" "+B .

If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x) is equal to

If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T and X=P^TQ^(2005)P , then X equal to:

Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A is equal to

Let A={:[(sqrt(3),-1),(2+sqrt(3),1-sqrt(3))]:},B={:[(-sqrt(3),2),(2-sqrt(3),1+sqrt(3))]:} Find A+B.

Show that 4sin27^0=(5+sqrt(5))^(1/2)-(3-sqrt(5))^(1/2)

Given A=[[sqrt(3),1,-1],[2, 3, 0]] and B=[[2, sqrt(5),1],[-2,3, 1/2]] , find A +B .