Home
Class 12
MATHS
Let the matrices A=[{:( sqrt3,-2),(0,1):...

Let the matrices `A=[{:( sqrt3,-2),(0,1):}]` and P be any orthogonal matrix such that Q = PAP' and let `Rne [r_0] _(2-2)=P'Q^(6) P`then

A

`r_(11) =81 `

B

`r_(1l) =81 sqrt3`

C

` r_(11) -4sqrt3`

D

` r_(11)=-sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find \( R = P' Q^6 P \) where \( Q = PAP' \) and \( A = \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( Q \) Given \( Q = PAP' \), we need to compute \( Q \). 1. **Find \( P' \)**: Since \( P \) is an orthogonal matrix, \( P' \) is its transpose. 2. **Compute \( Q \)**: We need to multiply \( A \) by \( P' \) and then by \( P \). ### Step 2: Calculate \( Q^6 \) Next, we need to compute \( Q^6 \). This involves multiplying \( Q \) by itself six times. However, we can simplify the computation using properties of matrices. ### Step 3: Substitute \( Q \) into \( R \) Now we substitute \( Q \) into the equation for \( R \): \[ R = P' Q^6 P = P' (P A P')^6 P \] ### Step 4: Simplify \( R \) Using the property of orthogonal matrices, we have: \[ P' P = I \quad \text{(identity matrix)} \] Thus, we can simplify \( R \): \[ R = P' (P A P')^6 P = P' P A^6 P' P = A^6 \] ### Step 5: Compute \( A^6 \) Now we need to compute \( A^6 \). We can do this by first calculating \( A^2 \), \( A^3 \), \( A^4 \), \( A^5 \), and finally \( A^6 \). 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \] Performing the multiplication: \[ A^2 = \begin{pmatrix} 3 & -2\sqrt{3} \\ 0 & 1 \end{pmatrix} \] 2. **Calculate \( A^3 \)**: \[ A^3 = A^2 \cdot A = \begin{pmatrix} 3 & -2\sqrt{3} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \] Performing the multiplication: \[ A^3 = \begin{pmatrix} 3\sqrt{3} & -6 \\ 0 & 1 \end{pmatrix} \] 3. **Calculate \( A^4 \)**: \[ A^4 = A^3 \cdot A = \begin{pmatrix} 3\sqrt{3} & -6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \] Performing the multiplication: \[ A^4 = \begin{pmatrix} 9 & -6\sqrt{3} \\ 0 & 1 \end{pmatrix} \] 4. **Calculate \( A^5 \)**: \[ A^5 = A^4 \cdot A = \begin{pmatrix} 9 & -6\sqrt{3} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \] Performing the multiplication: \[ A^5 = \begin{pmatrix} 27 & -18 \\ 0 & 1 \end{pmatrix} \] 5. **Calculate \( A^6 \)**: \[ A^6 = A^5 \cdot A = \begin{pmatrix} 27 & -18 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \] Performing the multiplication: \[ A^6 = \begin{pmatrix} 81 & -54 \\ 0 & 1 \end{pmatrix} \] ### Final Result Thus, we have: \[ R = A^6 = \begin{pmatrix} 81 & -54 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P=[(6,-2),(4,-6):}] and Q = [{:(5,3),(2,0):}] find the matrix M such that 2Q - 3P - 3M =0

Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that AB = BA and r ne 0 , then the value of (3p-3s)/(5q-4r) is equal to

Let the matrix A=[(1,2,3),(0, 1,2),(0,0,1)] and BA=A where B represent 3xx3 order matrix. If the total number of 1 in matrix A^(-1) and matrix B are p and q respectively. Then the value of p+q is equal to

Let A=[("tan"pi/3,"sec" (2pi)/3),(cot (2013 pi/3),cos (2012 pi))] and P be a 2 xx 2 matrix such that P P^(T)=I , where I is an identity matrix of order 2. If Q=PAP^(T) and R=[r_("ij")]_(2xx2)=P^(T) Q^(8) P , then find r_(11) .

Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[q_(ij)] is a matrix such that PQ=kI, where k in RR, k != 0 and I is the identity matrix of order 3. If q_23=-k/8 and det(Q)=k^2/2, then

Let P=[[1,0,0],[4,1,0],[16,4,1]] and I be the identity matrix of order 3 . If Q = [q_()ij ] is a matrix, such that P^(50)-Q=I , then (q_(31)+q_(32))/q_(21) equals

In P Q R , S is any point on the side Q R . Show that P Q+Q R+R P >2P S

Let C_1 and C_2 be parabolas x^2 = y - 1 and y^2 = x-1 respectively. Let P be any point on C_1 and Q be any point C_2 . Let P_1 and Q_1 be the reflection of P and Q, respectively w.r.t the line y = x then prove that P_1 lies on C_2 and Q_1 lies on C_1 and PQ >= [P P_1, Q Q_1] . Hence or otherwise , determine points P_0 and Q_0 on the parabolas C_1 and C_2 respectively such that P_0 Q_0 <= PQ for all pairs of points (P,Q) with P on C_1 and Q on C_2

Let P be a plane passing through the points (2,1,0), ( lambda - 1 , 1,1) and ( lambda ,0,1) and R be any point (2,1,6) and image of R in P is Q (6,5,-2) then lambda can be (lambda in R)

Let P be a plane passing through the points (2,1,0), ( lambda - 1 , 1,1) and ( lambda ,0,1) and R be any point (2,1,6) and image of R in P is Q (6,5,-2) then lambda can be (lambda in R)