Home
Class 12
MATHS
If Aa n dB are square matrices of the sa...

If `Aa n dB` are square matrices of the same order and `A` is non-singular, then for a positive integer `n ,(A^(-1)B A)^n` is equal to `A^(-n)B^n A^n` b. `A^n B^n A^(-n)` c. `A^(-1)B^n A^` d. `n(A^(-1)B^A)^`

A

`A^(-n) B^(n) A^(n) `

B

` A^(n) B^(n) A^(-n) `

C

` A^(-1) B^(n) A`

D

` n(A^(-1) B^(A)) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \((A^{-1} B A)^n\) where \(A\) and \(B\) are square matrices of the same order, and \(A\) is non-singular. We will proceed step by step. ### Step 1: Understanding the expression We start with the expression \((A^{-1} B A)^n\). This means we need to multiply \(A^{-1} B A\) by itself \(n\) times. ### Step 2: Calculate for \(n = 1\) For \(n = 1\): \[ (A^{-1} B A)^1 = A^{-1} B A \] ### Step 3: Calculate for \(n = 2\) For \(n = 2\): \[ (A^{-1} B A)^2 = (A^{-1} B A)(A^{-1} B A) \] Using the associative property of matrix multiplication: \[ = A^{-1} B (A A^{-1}) B A \] Since \(A A^{-1} = I\) (the identity matrix): \[ = A^{-1} B I B A = A^{-1} B^2 A \] ### Step 4: Calculate for \(n = 3\) For \(n = 3\): \[ (A^{-1} B A)^3 = (A^{-1} B A)(A^{-1} B A)(A^{-1} B A) \] Using the result from \(n = 2\): \[ = (A^{-1} B^2 A)(A^{-1} B A) \] Again, applying the associative property: \[ = A^{-1} B^2 (A A^{-1}) B A = A^{-1} B^2 I B A = A^{-1} B^3 A \] ### Step 5: Generalizing for \(n\) From the pattern observed: - For \(n = 1\): \(A^{-1} B^1 A\) - For \(n = 2\): \(A^{-1} B^2 A\) - For \(n = 3\): \(A^{-1} B^3 A\) We can generalize this to: \[ (A^{-1} B A)^n = A^{-1} B^n A \] ### Conclusion Thus, the expression \((A^{-1} B A)^n\) simplifies to: \[ (A^{-1} B A)^n = A^{-1} B^n A \] ### Answer The correct option is: **c. \(A^{-1} B^n A\)**
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A; B; C be square matrices of the same order n. If A is a non singular matrix; then AB = AC then B = C

A and B are square matrices and A is non-singular matrix, then (A^(-1) BA)^n,n in I' ,is equal to (A) A^-nB^nA^n (B) A^nB^nA^-n (C) A^-1B^nA (D) A^-nBA^n

If A is a nilpotent matrix of index 2, then for any positive integer n ,A(I+A)^n is equal to (a) A^(-1) (b) A (c) A^n (d) I_n

If Aa n dB are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e nA^(-1)B^(r-1)A=A^(-1)B^(-1)A= I b. 2I c. O d. -I

If A a n d B are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e n (A^(-1)B^(r-1)A)-(A^(-1)B^(-1)A)= a. I b. 2I c. O d. -I

Let A ,B be two matrices such that they commute. Show that for any positive integer n , A B^n=B^n A

Let A ,B be two matrices such that they commute, then for any positive integer n , (i) A B^n=B^n A (ii) (A B)^n =A^n B^n

If aa n db are distinct integers, prove that a-b is a factor of a^n-b^n , wherever n is a positive integer.

Let A ,\ B be two matrices such that they commute. Show that for any positive integer n , (A B)^n=A^n B^n

Let A ,\ B be two matrices such that they commute. Show that for any positive integer n , A B^n=B^n A