Home
Class 12
MATHS
If A =[{:( alpha , a ),( beta , b),( gam...

If A `=[{:( alpha , a ),( beta , b),( gamma, c):}]` then ` (A)A^(T) ` is

A

a non-singular matrix

B

a singular matrix

C

an identity matrix

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Three matrices are given as A = [{:( alpha ^(2) ,4,6),(9,beta ^(4) , 7),( 1,2,2gamma ^(2)):}] B= [{:( 2beta ^(2),-1,0),( 2,gamma^(2)-2gamma ,1),( 1,9,2alpha-1):}] C= [{:( gamma , 2,1),(1,alpha , 1),(2,0,beta ) :}] If Tr(A)=Tr (B) -1 and alpha, beta , gamma in R then det( c) can be

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is : (a) 1 (b) 1/2 (c) 3/8 (d) 9/4

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha , beta are the roots of x^2+ax -b=0 and gamma , sigma are the roots of x^2 + ax +b=0 then (alpha - gamma )(beta - gamma )( alpha - sigma )( beta - sigma )=

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

Determine the values of alpha ,beta , gamma when [{:( 0, 2beta, gamma),( alpha ,beta, -gamma),( alpha ,-beta, gamma):}] is orthogonal.

Given (b+c)/(11) = (c+a)/(12) = (a+b)/(13) for a Delta ABC with usual notation. If (cos A)/(alpha) = (cos B)/(beta) = (cos C)/(gamma) , then the ordered triad (alpha, beta, gamma) has a value:

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 then the coefficient of x in cubic equation whose roots are alpha ( beta + gamma ) , beta ( gamma + alpha) and gamma ( alpha + beta) is

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to