Home
Class 12
MATHS
If A =({:( 1,1,1),( 1,omega ^(2) , omeg...

If ` A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) ` where `omega` is a complex cube root of unity then `adj -A ` equals

A

`(omega ^(2) -omega ) vec A `

B

` (omega -omega ^(2) ) oversetto A `

C

` -oversetto A `

D

` oversetto A `

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjugate of the matrix \( A \) given by \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} \] where \( \omega \) is a complex cube root of unity, we can follow these steps: ### Step 1: Understand the properties of \( \omega \) Since \( \omega \) is a cube root of unity, we have: \[ \omega^3 = 1 \quad \text{and} \quad 1 + \omega + \omega^2 = 0 \] ### Step 2: Calculate the cofactors of \( A \) The adjugate of a matrix is the transpose of the cofactor matrix. We will calculate the cofactors for each element of the matrix. #### Cofactor \( C_{11} \) To find \( C_{11} \), we remove the first row and first column: \[ C_{11} = \begin{vmatrix} \omega^2 & \omega \\ \omega & \omega^2 \end{vmatrix} = \omega^2 \cdot \omega^2 - \omega \cdot \omega = \omega^4 - \omega^2 = \omega - \omega^2 \] #### Cofactor \( C_{12} \) To find \( C_{12} \), we remove the first row and second column: \[ C_{12} = -\begin{vmatrix} 1 & \omega \\ 1 & \omega^2 \end{vmatrix} = - (1 \cdot \omega^2 - 1 \cdot \omega) = -(\omega^2 - \omega) = \omega - \omega^2 \] #### Cofactor \( C_{13} \) To find \( C_{13} \), we remove the first row and third column: \[ C_{13} = \begin{vmatrix} 1 & \omega^2 \\ 1 & \omega \end{vmatrix} = 1 \cdot \omega - 1 \cdot \omega^2 = \omega - \omega^2 \] #### Cofactor \( C_{21} \) To find \( C_{21} \), we remove the second row and first column: \[ C_{21} = -\begin{vmatrix} 1 & 1 \\ 1 & \omega^2 \end{vmatrix} = - (1 \cdot \omega^2 - 1 \cdot 1) = -(\omega^2 - 1) = 1 - \omega^2 \] #### Cofactor \( C_{22} \) To find \( C_{22} \), we remove the second row and second column: \[ C_{22} = \begin{vmatrix} 1 & 1 \\ 1 & \omega \end{vmatrix} = 1 \cdot \omega - 1 \cdot 1 = \omega - 1 \] #### Cofactor \( C_{23} \) To find \( C_{23} \), we remove the second row and third column: \[ C_{23} = -\begin{vmatrix} 1 & 1 \\ 1 & \omega \end{vmatrix} = -(\omega - 1) = 1 - \omega \] #### Cofactor \( C_{31} \) To find \( C_{31} \), we remove the third row and first column: \[ C_{31} = \begin{vmatrix} 1 & 1 \\ 1 & \omega^2 \end{vmatrix} = \omega^2 - 1 \] #### Cofactor \( C_{32} \) To find \( C_{32} \), we remove the third row and second column: \[ C_{32} = -\begin{vmatrix} 1 & 1 \\ 1 & \omega \end{vmatrix} = -(\omega - 1) = 1 - \omega \] #### Cofactor \( C_{33} \) To find \( C_{33} \), we remove the third row and third column: \[ C_{33} = \begin{vmatrix} 1 & 1 \\ 1 & \omega^2 \end{vmatrix} = \omega^2 - 1 \] ### Step 3: Assemble the cofactor matrix The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} \omega - \omega^2 & \omega - \omega^2 & \omega - \omega^2 \\ 1 - \omega^2 & \omega - 1 & 1 - \omega \\ \omega^2 - 1 & 1 - \omega & \omega^2 - 1 \end{pmatrix} \] ### Step 4: Transpose the cofactor matrix to find the adjugate The adjugate \( \text{adj}(A) \) is the transpose of \( C \): \[ \text{adj}(A) = C^T = \begin{pmatrix} \omega - \omega^2 & 1 - \omega^2 & \omega^2 - 1 \\ \omega - \omega^2 & \omega - 1 & 1 - \omega \\ \omega - \omega^2 & 1 - \omega & \omega^2 - 1 \end{pmatrix} \] ### Final Result Thus, the adjugate of matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} \omega - \omega^2 & 1 - \omega^2 & \omega^2 - 1 \\ \omega - \omega^2 & \omega - 1 & 1 - \omega \\ \omega - \omega^2 & 1 - \omega & \omega^2 - 1 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then 1+ omega^(2)= …..

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If omega is a cube root of unity, then omega + omega^(2)= …..

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega) where, a,b,c,d, in R and omega is a complex cube root of unity then find the value of sum (1)/(a^(2)-a+1)

If 1,omega,omega^2 are the cube roots of unity, then /_\ is equal to.....

Let A=[(omega,-omega),(-omega,omega)] where w is a complex cube root of unity, B =[(1,-1),(-1,1) and A^9=2^kB , where k = ....

If |z-1|lt=2a n d|omegaz-1-omega^2|=a (where omega is a cube root of unity) , then complete set of values of a

Two dices are rolled and numbers r_(1) and r_(2) are chosen. Let 1+omega^(r_(1))+omega^(r_(2)) =lamda (where omega is a complex cube root of unity). Then