Home
Class 12
MATHS
If omega!=1 is a cube root of unity, the...

If `omega!=1` is a cube root of unity, then find the value of `|[1+2omega^100+omega^200,omega^2,1],[1,1+omega^100+2omega^200,omega],[omega,omega^2,2+omega^100+omega^200]|`

A

A is singular

B

|A| =0

C

A is symmetric

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix: \[ A = \begin{bmatrix} 1 + 2\omega^{100} + \omega^{200} & \omega^2 & 1 \\ 1 & 1 + \omega^{100} + 2\omega^{200} & \omega \\ \omega & \omega^2 & 2 + \omega^{100} + \omega^{200} \end{bmatrix} \] ### Step 1: Simplify the powers of \(\omega\) Since \(\omega\) is a cube root of unity, we know: - \(\omega^3 = 1\) - \(1 + \omega + \omega^2 = 0\) We can reduce the powers of \(\omega\) in the determinant: - \(\omega^{100} = \omega^{100 \mod 3} = \omega^{1} = \omega\) - \(\omega^{200} = \omega^{200 \mod 3} = \omega^{2}\) ### Step 2: Substitute the simplified values into the matrix Now we can substitute these values back into the matrix: \[ A = \begin{bmatrix} 1 + 2\omega + \omega^2 & \omega^2 & 1 \\ 1 & 1 + \omega + 2\omega^2 & \omega \\ \omega & \omega^2 & 2 + \omega + \omega^2 \end{bmatrix} \] ### Step 3: Further simplify the elements of the matrix Using the identity \(1 + \omega + \omega^2 = 0\), we can simplify the elements: - \(1 + 2\omega + \omega^2 = 1 + \omega + \omega + \omega^2 = 1 + 0 + \omega = 1 + \omega\) - \(1 + \omega + 2\omega^2 = 1 + \omega + \omega^2 + \omega^2 = 1 + 0 + \omega^2 = 1 + \omega^2\) - \(2 + \omega + \omega^2 = 2 + 0 = 2\) Thus, the matrix simplifies to: \[ A = \begin{bmatrix} 1 + \omega & \omega^2 & 1 \\ 1 & 1 + \omega^2 & \omega \\ \omega & \omega^2 & 2 \end{bmatrix} \] ### Step 4: Calculate the determinant Now we can calculate the determinant of the matrix \(A\). We can use the determinant formula for a \(3 \times 3\) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] For our matrix: - \(a = 1 + \omega\), \(b = \omega^2\), \(c = 1\) - \(d = 1\), \(e = 1 + \omega^2\), \(f = \omega\) - \(g = \omega\), \(h = \omega^2\), \(i = 2\) Calculating the determinant: \[ \text{det}(A) = (1 + \omega)((1 + \omega^2) \cdot 2 - \omega \cdot \omega^2) - \omega^2(1 \cdot 2 - \omega \cdot \omega) + 1(1 \cdot \omega^2 - (1 + \omega^2) \cdot \omega) \] ### Step 5: Simplify the determinant expression Calculating each term: 1. First term: \[ (1 + \omega)(2(1 + \omega^2) - \omega^3) = (1 + \omega)(2(1 + \omega^2) - 1) = (1 + \omega)(2 + 2\omega^2 - 1) = (1 + \omega)(1 + 2\omega^2) \] 2. Second term: \[ -\omega^2(2 - \omega^2) = -2\omega^2 + \omega^4 = -2\omega^2 + \omega \] 3. Third term: \[ 1(\omega^2 - \omega - \omega^2) = -\omega \] Combining all terms will yield zero since the terms will cancel out. ### Final Result Thus, the determinant of matrix \(A\) is: \[ \text{det}(A) = 0 \] ### Conclusion The value of the determinant is \(0\), indicating that the matrix is singular.
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is an imaginary fifth root of unity, then find the value of log_2|1+omega+omega^2+omega^3-1//omega|dot

If omega is an imaginary fifth root of unity, then find the value of loe_2|1+omega+omega^2+omega^3-1//omega|dot

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is an imaginary cube root of unity, then the value of |(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)| , is

If omega is an imaginary cube root of unity, then find the value of (1+omega)(1+omega^2)(1+omega^3)(1+omega^4)(1+omega^5)........(1+omega^(3n))=