Home
Class 12
MATHS
Three matrices are given as A = [{:( alp...

Three matrices are given as `A = [{:( alpha ^(2) ,4,6),(9,beta ^(4) , 7),( 1,2,2gamma ^(2)):}] B= [{:( 2beta ^(2),-1,0),( 2,gamma^(2)-2gamma ,1),( 1,9,2alpha-1):}] C= [{:( gamma , 2,1),(1,alpha , 1),(2,0,beta ) :}]` If Tr(A)=Tr (B) -1 and `alpha, beta , gamma in R ` then det( c) can be

A

`-1`

B

`2`

C

5

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( C \) given the conditions on the matrices \( A \) and \( B \). Let's proceed step by step. ### Step 1: Calculate the Trace of Matrices A and B The trace of a matrix is the sum of its diagonal elements. For matrix \( A \): \[ A = \begin{pmatrix} \alpha^2 & 4 & 6 \\ 9 & \beta^4 & 7 \\ 1 & 2 & 2\gamma^2 \end{pmatrix} \] The trace \( \text{Tr}(A) \) is: \[ \text{Tr}(A) = \alpha^2 + \beta^4 + 2\gamma^2 \] For matrix \( B \): \[ B = \begin{pmatrix} 2\beta^2 & -1 & 0 \\ 2 & \gamma^2 - 2\gamma & 1 \\ 1 & 9 & 2\alpha - 1 \end{pmatrix} \] The trace \( \text{Tr}(B) \) is: \[ \text{Tr}(B) = 2\beta^2 + (\gamma^2 - 2\gamma) + (2\alpha - 1) = 2\beta^2 + \gamma^2 - 2\gamma + 2\alpha - 1 \] ### Step 2: Set Up the Equation Based on Given Condition We are given that: \[ \text{Tr}(A) = \text{Tr}(B) - 1 \] Substituting the traces we calculated: \[ \alpha^2 + \beta^4 + 2\gamma^2 = (2\beta^2 + \gamma^2 - 2\gamma + 2\alpha - 1) - 1 \] This simplifies to: \[ \alpha^2 + \beta^4 + 2\gamma^2 = 2\beta^2 + \gamma^2 - 2\gamma + 2\alpha - 2 \] ### Step 3: Rearranging the Equation Rearranging gives us: \[ \alpha^2 + \beta^4 - 2\beta^2 + \gamma^2 + 2\gamma - 2\alpha = -2 \] This can be rewritten as: \[ \alpha^2 - 2\alpha + \beta^4 - 2\beta^2 + \gamma^2 + 2\gamma + 2 = 0 \] ### Step 4: Completing the Square We can complete the square for each variable: 1. For \( \alpha \): \[ \alpha^2 - 2\alpha = (\alpha - 1)^2 - 1 \] 2. For \( \beta \): \[ \beta^4 - 2\beta^2 = (\beta^2 - 1)^2 - 1 \] 3. For \( \gamma \): \[ \gamma^2 + 2\gamma = (\gamma + 1)^2 - 1 \] Substituting these into the equation gives: \[ (\alpha - 1)^2 + (\beta^2 - 1)^2 + (\gamma + 1)^2 - 3 = 0 \] Thus, we have: \[ (\alpha - 1)^2 + (\beta^2 - 1)^2 + (\gamma + 1)^2 = 3 \] ### Step 5: Finding Possible Values for \( \alpha, \beta, \gamma \) The equation indicates that: - \( \alpha - 1 = 0 \) implies \( \alpha = 1 \) - \( \beta^2 - 1 = 0 \) implies \( \beta = \pm 1 \) - \( \gamma + 1 = 0 \) implies \( \gamma = -1 \) ### Step 6: Substitute Values into Matrix C Now substituting \( \alpha = 1 \), \( \beta = 1 \) or \( -1 \), and \( \gamma = -1 \) into matrix \( C \): \[ C = \begin{pmatrix} \gamma & 2 & 1 \\ 1 & \alpha & 1 \\ 2 & 0 & \beta \end{pmatrix} \] Substituting \( \gamma = -1 \), \( \alpha = 1 \), and \( \beta = 1 \): \[ C = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix} \] ### Step 7: Calculate the Determinant of Matrix C Using the determinant formula for a 3x3 matrix: \[ \text{det}(C) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: \[ C = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] Thus: \[ \text{det}(C) = -1(1 \cdot 1 - 1 \cdot 0) - 2(1 \cdot 1 - 1 \cdot 2) + 1(1 \cdot 0 - 1 \cdot 2) \] Calculating this gives: \[ = -1(1) - 2(1 - 2) + 1(0 - 2) \] \[ = -1 - 2(-1) - 2 = -1 + 2 - 2 = -1 \] ### Final Result Thus, the determinant of matrix \( C \) can be: \[ \text{det}(C) = -1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For alpha, beta, gamma in R , let A=[(alpha^(2),6,8),(3,beta^(2),9),(4,5,gamma^(2))] and B=[(2alpha,3,5),(2,2beta,6),(1,4,2gamma-3)]

If A= [(alpha,beta),(gamma,-alpha)] is such that A^(2)=1 , then

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Determine the values of alpha ,beta , gamma when [{:( 0, 2beta, gamma),( alpha ,beta, -gamma),( alpha ,-beta, gamma):}] is orthogonal.

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is : (a) 1 (b) 1/2 (c) 3/8 (d) 9/4

The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) + cos^(2)alpha - 2cos alpha cos(beta + gamma)cos(alpha + beta + gamma) is (a) independent of alpha (b) independent of beta (c) dependent on gamma only (d) dependent on alpha, beta, gamma

If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ther Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)] equals (A) alpha beta gamma (B) alpha +beta + gamma (C) 0 (D) none of these

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =